Skip to main content

Efficient Sensor Selection for Individualized Prediction Based on Biosignals

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2022 (IDEAL 2022)

Abstract

Soft sensors combine a hardware component with an intelligent algorithmic processing of the raw sensor signals. While individualization of software components according to a person’s specific needs is comparably cheap, individualization of the sensor hardware itself is usually impossible in mass production. At the same time, the number of raw sensors should be minimum to reduce production costs. In this contribution, we propose to model this challenge as a feature selection problem, which optimizes a feature set simultaneously with respect to a family of functions corresponding to individualized post-processing of sensor signals. This concept is integrated into a number of different classical feature selection schemes, and evaluated in the context of the placement of pressure sensors as part of a shoe insole. It turns out that feature selection respecting the class of functions is superior to both placement based on anatomical considerations and classical feature selection methods.

The project has been funded by the Ministry of Culture and Science of the Federal State North Rhine-Westphalia in the frame of the project RoSe in the AI-graduate-school https://dataninja.nrw/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Günther, M.: Intelligence by mechanics. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 365(1850), 199–220 (2007). https://doi.org/10.1098/rsta.2006.1911

    Article  MathSciNet  Google Scholar 

  2. Bradski, G.: The OpenCV library. J. Softw. Tools 25, 120–123 (2000)

    Google Scholar 

  3. Dhal, P., Azad, C.: A comprehensive survey on feature selection in the various fields of machine learning. Appl. Intell. 52(4), 4543–4581 (2022). https://doi.org/10.1007/s10489-021-02550-9

    Article  Google Scholar 

  4. Ha, S., Park, S., Lim, H., Baek, S.H., Kim, D.K., Yoon, S.H.: The placement position optimization of a biosensor array for wearable healthcare systems. J. Mech. Sci. Technol. 33(7), 3237–3244 (2019). https://doi.org/10.1007/s12206-019-0619-0

    Article  Google Scholar 

  5. Hughes, A.J.: Statistics: A Foundation for Analysis. Addison-Wesley Pub. Co., Reading (1971). http://archive.org/details/trent_0116302260611

  6. Leite, M., Soares, B., Lopes, V., Santos, S., Silva, M.T.: Design for personalized medicine in orthotics and prosthetics. Procedia CIRP 84, 457–461 (2019). https://www.sciencedirect.com/science/article/pii/S2212827119309011. https://doi.org/10.1016/j.procir.2019.04.254

  7. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018). https://www.sciencedirect.com/science/article/pii/S0925231217315928. https://doi.org/10.1016/j.neucom.2017.06.084

  8. Ometov, A., et al.: A survey on wearable technology: history, state-of-the-art and current challenges. Comput. Netw. 193, 108074 (2021). https://www.sciencedirect.com/science/article/pii/S1389128621001651. https://doi.org/10.1016/j.comnet.2021.108074

  9. Oostenveld, R., Praamstra, P.: The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 112(4), 713–719 (2001). https://www.sciencedirect.com/science/article/pii/S1388245700005277. https://doi.org/10.1016/S1388-2457(00)00527-7

  10. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 40–44 (1993). https://doi.org/10.1109/ACSSC.1993.342465. ISSN: 1058–6393

  11. Pedregosa, F., et al.: SciKit-learn: machine learning in python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011). http://jmlr.org/papers/v12/pedregosa11a.html

  12. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  13. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996). https://onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1996.tb02080.x. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

  14. ECG Lead Placement - Normal Function of the Heart - Cardiology Teaching Package - Practice Learning - Division of Nursing - The University of Nottingham. https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/placement_of_leads.php

  15. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020). https://www.nature.com/articles/s41592-019-0686-2. https://doi.org/10.1038/s41592-019-0686-2

  16. Xiang, Y., Gubian, S., Suomela, B., Hoeng, J.: Generalized simulated annealing for global optimization: the GenSA package. R J. 5(1), 13 (2013). https://journal.r-project.org/archive/2013/RJ-2013-002/index.html. https://doi.org/10.32614/RJ-2013-002

  17. Yoo, S., Gil, H., Kim, J., Ryu, J., Yoon, S., Park, S.K.: The optimization of the number and positions of foot pressure sensors to develop smart shoes. J. Ergon. Soc. Korea 36, 15 (2017). https://doi.org/10.5143/JESK.2017.36.5.395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Vieth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vieth, M., Grimmelsmann, N., Schneider, A., Hammer, B. (2022). Efficient Sensor Selection for Individualized Prediction Based on Biosignals. In: Yin, H., Camacho, D., Tino, P. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2022. IDEAL 2022. Lecture Notes in Computer Science, vol 13756. Springer, Cham. https://doi.org/10.1007/978-3-031-21753-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21753-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21752-4

  • Online ISBN: 978-3-031-21753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics