Skip to main content

Potential of Atmospheric Water Harvesting in Arid Regions: Case Studies

  • Chapter
  • First Online:
Atmospheric Water Harvesting Development and Challenges

Part of the book series: Water Science and Technology Library ((WSTL,volume 122))

Abstract

Arid regions are classified on the basis of severe lack of available water which further affects the growth as well as the development of flora, fauna, and human life. The idea of recovering water from atmosphere has remained quite a problem in arid regions. AWH defined as atmospheric water harvesting, is a prominent way to overcome water scarcity. It is considered as an alternative source of fresh water regardless of the physical conditions prevailing in a certain area. Various techniques are used to harvest atmospheric water that comprises adsorption-based technology, fog collector, atmospheric water generator and few other models in other to harvest atmospheric water. In this chapter, our focus will mainly be based on potential behind harvesting atmospheric water in arid regions and we will be going through different case studies to have in-depth knowledge and information regarding it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AWH:

Atmospheric water harvesting

AWG:

Atmospheric water generator

SWP:

Specific water production

SEC:

Specific energy consumption

RR:

Recovery ratio

RH:

Relative humidity

TEC:

Thermoelectric cooling

VCC:

Vapor compression cycle

PE:

Polyethylene foil

MHI:

Moisture harvesting index

SFC:

Standard fog collectors

SC:

Shading coefficient

References

  • Beysens D, Milimouk I (2000) The case for alternative fresh water sources. Pour Les Res Altern En Eau, Secheresse 11(4):1–16

    Google Scholar 

  • Bruintjes RT (1999) A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull Am Meteor Soc 80(5):805–820

    Article  Google Scholar 

  • Carvajal D, Minonzio JG, Casanga E, Muñoz J, Aracena A, Montecinos S, Beysens D et al (2018) Roof-integrated dew water harvesting in Combarbalá, Chile. J Water Supply Res Technol—AQUA 67(4):357–374

    Google Scholar 

  • Chaptal L (1930) La lutte contre la sécheresse par la captation de la vapeur d’eau atmosphérique. Journal D’agriculture Traditionnelle Et De Botanique Appliquée 10(107):566–568

    Google Scholar 

  • Chartres C, Varma S (2010) Out of water: from abundance to scarcity and how to solve the worlds water problems. FT Press, Upper Saddle river, New Jersey

    Google Scholar 

  • Dai X, Sun N, Nielsen SO, Stogin BB, Wang J, Yang S, Wong TS et al (2018) Hydrophilic directional slippery rough surfaces for water harvesting. Sci Adv 4(3):eaaq0919

    Google Scholar 

  • Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117(4):476–485

    Article  CAS  Google Scholar 

  • DeFelice TP, Axisa D (2017) Modern and prospective technologies for weather modification activities: developing a framework for integrating autonomous unmanned aircraft systems. Atmos Res 193:173–183

    Article  Google Scholar 

  • Domen JK, Stringfellow WT, Camarillo MK, Gulati S et al (2014) Fog water as an alternative and sustainable water resource. Clean Technol Environ Policy 16(2):235–249

    Article  Google Scholar 

  • Fessehaye M, Abdul Wahab SA, Savage MJ, Kohler T, Gherezghiher T, Hurni H et al (2014) Fog-water collection for community use. Renew Sustain Energy Rev 29:52–62

    Article  Google Scholar 

  • Gaur MK, Squires VR (2018) Geographic extent and characteristics of the world’s arid zones and their peoples. Climate variability impacts on land use and livelihoods in drylands. Springer, Cham, pp 3–20

    Chapter  Google Scholar 

  • Gido B, Friedler E, Broday DM et al (2016) Assessment of atmospheric moisture harvesting by direct cooling. Atmos Res 182:156–162

    Article  Google Scholar 

  • Gindel I (1965) Irrigation of plants with atmospheric water within the desert. Nature 207(5002):1173–1175

    Article  Google Scholar 

  • Girja S (2008) Harvesting dew water using radiative-cooled condenser to supplement drinking water supply in hot arid coastal area of north-west India. Paper presented at the Agricultural and biosystems engineering for a sustainable world, International conference on agricultural engineering, Hersonissos, Crete, Greece, European Society of Agricultural Engineers, 23–25 June 2008

    Google Scholar 

  • Guadarrama Cetina J, Mongruel A, Medici MG, Baquero E, Parker AR, Milimouk Melnytchuk I, Beysens D et al (2014) Dew condensation on desert beetle skin. Eur Phys J E 37(11):1–6

    Article  CAS  Google Scholar 

  • Henschel JR, Mtuleni V, Gruntkowski N, Seely MK, Shayengana E et al (1998) Namfog: Namibian applications of fog-collecting systems: phase 1. Evaluation of fog-water harvesting. Occasional paper No 8, DRFN

    Google Scholar 

  • Jia Z, Wang Z, Wang H et al (2019) Characteristics of dew formation in the semi-arid Loess Plateau of central Shaanxi Province, China. Water 11(1):126

    Article  Google Scholar 

  • Khalil B, Adamowski J, Shabbir A, Jang C, Rojas M, Reilly K, Ozga Zielinski B et al (2016) A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustain Water Res Manag 2(1):71–86

    Article  Google Scholar 

  • Khalil MM, Kara Ali A, Assad M et al (2022) Potential of harvesting water from fog and dew water over semi-arid and arid regions in Syria. Water Supply 22(1):874–882

    Article  CAS  Google Scholar 

  • Klemm O, Schemenauer RS, Lummerich A, Cereceda P, Marzol V, Corell D, Fessehaye GM et al (2012) Fog as a fresh-water resource: overview and perspectives. Ambio 41(3):221–234

    Article  Google Scholar 

  • Knapen A (1928) Memoires sur le puits aerien. Bulletine Society Ingenieuns Civils, 139–140

    Google Scholar 

  • Lancaster J, Seely LN, MK, et al (1984) Climate of the central Namib Desert. Modoqua 1984(1):5–61

    Google Scholar 

  • Lekouch I, Lekouch K, Muselli M, Mongruel A, Kabbachi B, Beysens D et al (2012) Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J Hydrol 448:60–72

    Article  Google Scholar 

  • Maestre Valero JF, Martinez Alvarez V, Baille A, Martín Górriz B, Gallego Elvira B et al (2011) Comparative analysis of two polyethylene foil materials for dew harvesting in a semi-arid climate. J Hydrol 410(1–2):84–91

    Article  CAS  Google Scholar 

  • Maleki M, Eslamian S, Hamouda B et al (2021) Principles and applications of atmospheric water harvesting. In: Handbook of water harvesting and conservation: basic concepts and fundamentals, pp 243–259

    Google Scholar 

  • Mawed K, Alshihabi O (2014) Assessment of precipitation in Syria, trend analysis, during the period of (1955–2006). Arab J Arid Environ 7:50–58

    Google Scholar 

  • Moro MJ, Were A, Villagarcía L, Cantón Y, Domingo F et al (2007) Dew measurement by Eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain. J Hydrol 335(3–4):295–302

    Article  Google Scholar 

  • Muselli M, Beysens D, Milimouk I et al (2006) A comparative study of two large radiative dew water condensers. J Arid Environ 64(1):54–76

    Article  Google Scholar 

  • Muselli M, Beysens D, Mileta M, Milimouk I et al (2009) Dew and rain water collection in the Dalmatian Coast, Croatia. Atmos Res 92(4):455–463

    Article  Google Scholar 

  • Nagel JF (1959) Fog precipitation at Swakopmund. Weather Bureau Newslett 125:1–9

    Google Scholar 

  • Nagel JF (1962) Fog precipitation measurements on Africa’s southwest coast. Notos 11:51–60

    Google Scholar 

  • Narain P, Khan MA, Singh, G et al (2005) Potential for water conservation and harvesting against drought in Rajasthan, India, Working paper 104

    Google Scholar 

  • Ngaina JN, Muthama JN, Opere AO, Ininda JM., Ng’etich CK, Ongoma V, Mutai BK et al (2014) Potential of harvesting atmospheric water over urban cities in Kenya

    Google Scholar 

  • Nilsson TMJ, Vargas WE, Niklasson GA, Granqvist CG et al (1994) Condensation of water by radiative cooling. Renew Energy 5(1–4):310–317

    Article  CAS  Google Scholar 

  • Olivier J (2004) Fog harvesting: An alternative source of water supply on the West Coast of South Africa. GeoJ 61(2):203–214

    Article  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34

    Article  CAS  Google Scholar 

  • Pietruszka RD, Seely MK (1985) Predictability of two moisture sources in the Namib Desert. South African J Sci

    Google Scholar 

  • Quade J, Rech JA, Betancourt JL, Latorre C, Quade B, Rylander KA, Fisher T et al (2008) Paleowetlands and regional climate change in the central Atacama Desert, Northern Chile. Quatern Res 69(3):343–360

    Article  Google Scholar 

  • Ritter A, Regalado CM, Aschan G et al (2008) Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based impaction model. J Hydrometeorol 9(5):920–935

    Article  Google Scholar 

  • Rubio MA, Lissi E, Villena G (2002) Nitrite in rain and dew in Santiago city, Chile. Its possible impact on the early morning start of the photochemical smog. Atmos Environ 36(2):293–297

    Google Scholar 

  • Schemenauer RS, Cereceda P (1994) Fog collection's role in water planning for developing countries. In: Natural resources forum, vol 18, No 2. Blackwell Publishing Ltd, Oxford, UK, pp 91–100

    Google Scholar 

  • Shanyengana ES, Henschel JR, Seely MK, Sanderson RD et al (2002) Exploring fog as a supplementary water source in Namibia. Atmos Res 64(1–4):251–259

    Article  CAS  Google Scholar 

  • Sharan G, Roy AK, Royon L, Mongruel A, Beysens D et al (2017) Dew plant for bottling water. J Clean Prod 155:83–92

    Article  Google Scholar 

  • Straub DJ, Hutchings JW, Herckes P et al (2012) Measurements of fog composition at a rural site. Atmos Environ 47:195–205

    Article  CAS  Google Scholar 

  • Sultan M, Bilal M, Miyazaki T, Sajjad U, Ahmad F et al (2021) Adsorption-based atmospheric water harvesting. In: Technology fundamentals and energy-efficient adsorbents. Technology in agriculture, p 369

    Google Scholar 

  • Tu Y, Wang R, Zhang Y, Wang J et al (2018) Progress and expectation of atmospheric water harvesting. Joule 2(8):1452–1475

    Article  CAS  Google Scholar 

  • UNICEF (2020) Water scarcity, addressing the growing lack of available water to meet children’s needs. http://www.unicef.org. Accessed 1 March 2020

  • Wahlgren RV (2001) Atmospheric water vapour processor designs for potable water production: a review. Water Res 35(1):1–22

    Article  CAS  Google Scholar 

  • Wahlgren RV (2014) Another water resource for Caribbean countries: water-from-air. Paper presented at the Caribbean Water & Wastewater Association, twenty-third annual water & wastewater conference and exhibition, Atlantis, Paradise Island, Bahamas, 6–11 Oct 2014

    Google Scholar 

  • Wang G, Zhong D, Li T, Wei J, Huang Y, Fu X, Zhang Y et al (2016) Sky River: Discovery, concept, and implications for future research. Sci Sinica Technol 46(6):649–656

    Google Scholar 

  • Wang J, Dang Y, Meguerdichian AG, Dissanayake S, Kankanam Kapuge T, Bamonte S, Suib SL et al (2019) Water harvesting from the atmosphere in arid areas with manganese dioxide. Environ Sci Technol Lett 7(1):48–53

    Article  Google Scholar 

  • Zamir Y, Drechsler N, Howell J et al (2019) Deep radiative cooling passive dew collection. arXiv preprint arXiv:1909.10937

  • Zangvil A (1996) Six years of dew observations in the Negev Desert, Israel. J Arid Environ 32(4):361–371

    Article  Google Scholar 

  • Zhang J, Chen F, Lu Y, Zhang Z, Liu J, Chen Y, Parkin IP et al (2020) Superhydrophilic–superhydrophobic patterned surfaces on glass substrate for water harvesting. J Mater Sci 55(2):498–508

    Article  CAS  Google Scholar 

  • Zhou X, Lu H, Zhao F, Yu G et al (2020) Atmospheric water harvesting: a review of material and structural designs. ACS Mater Lett 2(7):671–684

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Budhalakoti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Budhalakoti, B., Maurya, S.K., Bhatrola, K., Kothiyal, N.C., Kumar, V. (2023). Potential of Atmospheric Water Harvesting in Arid Regions: Case Studies. In: Fosso-Kankeu, E., Al Alili, A., Mittal, H., Mamba, B. (eds) Atmospheric Water Harvesting Development and Challenges. Water Science and Technology Library, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-031-21746-3_6

Download citation

Publish with us

Policies and ethics