Skip to main content

Metal-Oxide Frameworks for Atmospheric Water Harvesting

  • Chapter
  • First Online:
Atmospheric Water Harvesting Development and Challenges

Abstract

Atmospheric water harvesting (AWH) has consistently emerged as a possible source of fresh water, especially in regions where water and energy are scarce. Harvesting water from ambient air has the potential to be largely powered by renewable energy sources. Renewable energy has demonstrated a greater potential to produce water in arid regions using adsorption-based atmospheric water harvesting (ABAWH). Adsorbent is the only component in the ABAWH process that converts ambient air or moisture to water. In this direction, metal–organic frameworks (MOFs) have recently emerged as effective AWH adsorbents. The chapter focuses on the development of MOF-based adsorbents with excellent adsorption performance. Various parameters, such as adsorption kinetics, climatic conditions, and adsorption–desorption rate, have been covered in this chapter. This chapter also looks at the current advancements in AWH technologies and achievements. It is expected that this chapter will provide the reader with challenges that have been identified that retard the potential practical application of MOFs in AWH technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S (2012) Effect of functional groups in MIL-101 on water sorption behavior. Micropor Mesopor Mater 157:89–93

    Article  CAS  Google Scholar 

  • Alnaser WE, Barakat A (2000) Use of condensed water vapour from the atmosphere for irrigation in Bahrain. Appl Energy 65(1–4):3–18

    Article  CAS  Google Scholar 

  • Baier W (1966) Studies on dew formation under semi-arid conditions. Agric Meteorol 3(1–2):103–112

    Article  Google Scholar 

  • Beysens D, Clus O, Mileta M, Milimouk I, Muselli M, Nikolayev VS (2007) Collecting dew as a water source on small islands: the dew equipment for water project in Bis˘ evo (Croatia). Energy 32(6):1032–1037

    Article  Google Scholar 

  • Bilal M, Sultan M, Morosuk T, Den W, Sajjad U, Aslam MM, Shahzad MW, Farooq M (2022) Adsorption-based atmospheric water harvesting: a review of adsorbents and systems. Int Commun Heat Mass Transfer 133:105961

    Article  CAS  Google Scholar 

  • Boretti A, Rosa L (2019) Reassessing the projections of the world water development report. NPJ Clean Water 2(1):1–6

    Article  Google Scholar 

  • Brown PS, Bhushan B (2016) Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philos Trans Royal Soc Math Phys Eng Sci 374(2073):20160135

    Google Scholar 

  • Calderón M, Cereceda P, Larrain H, Osses P, Pérez L, Ibáñez M (2010) Alto Patache fog oasis in the Atacama Desert: geographical basis for a sustainable development program. In: Proceedings of the 5th international conference on fog, fog collection and dew, pp 25–30

    Google Scholar 

  • Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2014a) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43(16):5594–5617

    Article  CAS  Google Scholar 

  • Canivet J, Bonnefoy J, Daniel C, Legrand A, Coasne B, Farrusseng D (2014b) Structure–property relationships of water adsorption in metal–organic frameworks. New J Chem 38(7):3102–3111

    Article  CAS  Google Scholar 

  • Carvajal D, Minonzio JG, Casanga E, Muñoz J, Aracena A, Montecinos S, Beysens D (2018) Roof-integrated dew water harvesting in Combarbalá, Chile. J Water Supply Res Technol—AQUA 67(4):357–374

    Google Scholar 

  • Domen JK, Stringfellow WT, Camarillo MK, Gulati S (2014) Fog water as an alternative and sustainable water resource. Clean Technol Environ Policy 16(2):235–249

    Article  Google Scholar 

  • Ejeian M, Wang RZ (2021) Adsorption-based atmospheric water harvesting. Joule 5(7):1678–1703

    Article  Google Scholar 

  • Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM (2018) Practical water production from desert air. Sci Adv 4(6):p.eaat3198

    Google Scholar 

  • Furukawa H, Gandara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal–organic frameworks and related materials. J Am Chem Soc 136(11):4369–4381

    Article  CAS  Google Scholar 

  • Gad HE, Hamed AM, El-Sharkawy II (2001) Application of a solar desiccant/collector system for water recovery from atmospheric air. Renew Energy 22(4):541–556

    Article  CAS  Google Scholar 

  • Gado MG, Nasser M, Hassan AA, Hassan H (2022) Adsorption-based atmospheric water harvesting powered by solar energy: Comprehensive review on desiccant materials and systems. Process Saf Environ Prot 160:166–183

    Article  CAS  Google Scholar 

  • Garrod RP, Harris LG, Schofield WCE, McGettrick J, Ward LJ, Teare DOH, Badyal JPS (2007) Mimicking a Stenocara Beetle’s back for microcondensation using plasmachemical patterned superhydrophobic—superhydrophilic surfaces. Langmuir 23(2):689–693

    Article  CAS  Google Scholar 

  • Gido B, Friedler E, Broday DM (2016) Assessment of atmospheric moisture harvesting by direct cooling. Atmos Res 182:156–162

    Article  Google Scholar 

  • Hanikel N, Pei X, Chheda S, Lyu H, Jeong W, Sauer J, Gagliardi L, Yaghi OM (2021) Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 374(6566):454–459

    Article  CAS  Google Scholar 

  • Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111(15):5962–5964

    Article  CAS  Google Scholar 

  • Hu Y, Fang Z, Wan X, Ma X, Wang S, Fan S, Dong M, Ye Z, Peng X (2022) Carbon nanotubes decorated hollow metal–organic frameworks for efficient solar-driven atmospheric water harvesting. Chem Eng J 430:133086

    Article  CAS  Google Scholar 

  • Inbar O, Gozlan I, Ratner S, Aviv Y, Sirota R, Avisar D (2020) Producing safe drinking water using an atmospheric water generator (AWG) in an urban environment. Water 12(10):2940

    Article  CAS  Google Scholar 

  • Jabalia N, Kumar A, Kumar V, Rani R (2021) In Silico approach in drug design and drug discovery: an update. In: Innovations and implementations of computer aided drug discovery strategies in rational drug design. Springer, Singapore, pp 245–271

    Google Scholar 

  • Jaen MVM (2002) Fog water collection in a rural park in the Canary Islands (Spain). Atmos Res 64(1–4):239–250

    Article  Google Scholar 

  • Jalali S, Aliabadi M, Mahdavinejad M (2021) Learning from plants: a new framework to approach water-harvesting design concepts. Int J Build Pathol Adapt

    Google Scholar 

  • Jeremias F, Khutia A, Henninger SK, Janiak C (2012) MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J Mater Chem 22(20):10148–10151

    Article  CAS  Google Scholar 

  • Kabeel AE (2007) Water production from air using multi-shelves solar glass pyramid system. Renew Energy 32(1):157–172

    Article  CAS  Google Scholar 

  • Khalil B, Adamowski J, Shabbir A, Jang C, Rojas M, Reilly K, Ozga-Zielinski B (2016) A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustain Water Res Manag 2(1):71–86

    Article  Google Scholar 

  • Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, Umans AS, Yaghi OM, Wang EN (2017) Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356(6336):430–434

    Article  CAS  Google Scholar 

  • Kim H, Rao SR, Kapustin EA, Zhao L, Yang S, Yaghi OM, Wang EN (2018) Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun 9(1):1–8

    Google Scholar 

  • Kim H, Rao SR, LaPotin A, Lee S, Wang EN (2020) Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting. Int J Heat Mass Transf 161:120253

    Article  CAS  Google Scholar 

  • Ko N, Hong J, Sung S, Cordova KE, Park HJ, Yang JK, Kim J (2015) A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67. Dalton Trans 44(5):2047–2051

    Article  CAS  Google Scholar 

  • Kondo M, Yoshitomi T, Matsuzaka H, Kitagawa S, Seki K (1997) Three-dimensional framework with channeling cavities for small molecules:{[M2 (4, 4′-bpy) 3 (NO3) 4]·xH2O} n (M=Co, Ni, Zn). Angew Chem Int Ed Engl 36(16):1725–1727

    Article  CAS  Google Scholar 

  • Kumar M, Yadav A (2015) Experimental investigation of design parameters of solar glass desiccant box type system for water production from atmospheric air. J Renew Sustain Energy 7(3):033122

    Article  Google Scholar 

  • Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S (2009) Characterization of metal-organic frameworks by water adsorption. Micropor Mesopor Mater 120(3):325–330

    Article  Google Scholar 

  • LaPotin A, Kim H, Rao SR, Wang EN (2019) Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc Chem Res 52(6):1588–1597

    Article  CAS  Google Scholar 

  • Larrain H, Velásquez F, Pinto R, Lázaro P, Cereceda P, Osses P, Schemenauer RS (2001) Two years of fog measurements at the site “Falda Verde”, north of Chañaral (Chile). In: Second international conference on fog and fog collection, pp 223–226

    Google Scholar 

  • Larrain H, Velásquez F, Cereceda P, Espejo R, Pinto R, Osses P, Schemenauer RS (2002) Fog measurements at the site “Falda Verde” north of Chañaral compared with other fog stations of Chile. Atmos Res 64(1–4):273–284

    Article  Google Scholar 

  • Lawson HD, Walton SP, Chan C (2021) Metal–organic frameworks for drug delivery: a design perspective. ACS Appl Mater Interfaces 13(6):7004–7020

    Article  CAS  Google Scholar 

  • Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal—organic frameworks: gas sorption isotherms for Zn (BDC)(BDC = 1, 4-benzenedicarboxylate). J Am Chem Soc 120(33):8571–8572

    Article  CAS  Google Scholar 

  • Li A, Bueno-Perez R, Wiggin S, Fairen-Jimenez D (2020) Enabling efficient exploration of metal–organic frameworks in the Cambridge structural database. CrystEngComm 22(43):7152–7161

    Article  CAS  Google Scholar 

  • Liu X, Beysens D, Bourouina T (2022) Water harvesting from air: current passive approaches and outlook. ACS Mater Lett 4(5):1003–1024

    Article  CAS  Google Scholar 

  • Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang JS, Hong DY, Kyu Hwang Y, Hwa Jhung S (2008) High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks mil-100 and mil-101. Langmuir 24(14):7245–7250

    Article  CAS  Google Scholar 

  • Mabokela TE, Somo TR, Maponya TC, Hato MJ, Makhado E, Makgopa K, Modibane KD (2022) Dynamic carbon dioxide uptake capacity of metal organic framework using thermogravimetrical evaluation at different CO2 pressure. Mater Lett 317:132086

    Article  CAS  Google Scholar 

  • Nioras D, Ellinas K, Constantoudis V, Gogolides E (2021) How different are fog collection and dew water harvesting on surfaces with different wetting behaviors? ACS Appl Mater Interfaces 13(40):48322–48332

    Article  CAS  Google Scholar 

  • Nørgaard T, Dacke M (2010) Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front Zool 7(1):1–8

    Article  Google Scholar 

  • Petersen JF, Sack D, Gabler RE (2016) Physical geography. Cengage Learn

    Google Scholar 

  • Rieth AJ, Yang S, Wang EN, Dincă, M. (2017) Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Cent Sci 3(6):668–672

    Article  CAS  Google Scholar 

  • Rieth AJ, Wright AM, Skorupskii G, Mancuso JL, Hendon CH, Dincă, M. (2019) Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks. J Am Chem Soc 141(35):13858–13866

    Article  CAS  Google Scholar 

  • Rojas F, Carter V, Rosato M (2014) Fog collection technology transfer and co-creation projects in Falda Verde, Chile and Tojquia, Guatemala. In: Technologies for sustainable development. Springer, Cham, pp 275–286

    Google Scholar 

  • Schemenauer RS, Zanetta N, Rosato M, Carter Gamberini MV (2016) The Tojquia, Guatemala fog collection project 2006 to 2016. In: 7th international conference on fog, fog collection and dew

    Google Scholar 

  • Sharan G (2011) Harvesting dew with radiation cooled condensers to supplement drinking water supply in semi-arid. Int J Serv Learn Eng Humanitarian Eng Soc Entrepreneurship 6(1):130–150

    Google Scholar 

  • Sharan G, Roy AK, Royon L, Mongruel A, Beysens D (2017) Dew plant for bottling water. J Clean Prod 155:83–92

    Article  Google Scholar 

  • Shi W, Zhu Y, Shen C, Shi J, Xu G, Xiao X, Cao R (2019) Water sorption properties of functionalized MIL-101 (Cr)-X (X=–NH2,–SO3H, H,–CH3,–F) based composites as thermochemical heat storage materials. Micropor Mesopor Mater 285:129–136

    Article  CAS  Google Scholar 

  • Suh BL, Chong S, Kim J (2019) Photochemically induced water harvesting in metal–organic framework. ACS Sustain Chem Eng 7(19):15854–15859

    Article  CAS  Google Scholar 

  • Suvindran N, Li F, Pan Y, Zhao X (2018) Characterization and bioreplication of tradescantia pallida inspired biomimetic superwettability for dual way patterned water harvesting. Adv Mater Interfaces 5(19):1800723

    Article  Google Scholar 

  • Teo HWB, Chakraborty A (2017) Water adsorption on various metal organic framework. In: IOP conference series: materials science and engineering, vol 272, No. 1. IOP Publishing, p 012019

    Google Scholar 

  • Tu Y, Wang R, Zhang Y, Wang J (2018) Progress and expectation of atmospheric water harvesting. Joule 2(8):1452–1475

    Article  CAS  Google Scholar 

  • Unicef (2020) Water and the global climate crisis: 10 things you should know. https://www.unicef.org/stories/water-and-climate-change (2021). Accessed 29 April 2022

  • Wang JY, Wang RZ, Wang LW (2016) Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents. Appl Therm Eng 100:893–901

    Article  CAS  Google Scholar 

  • Wang JY, Wang RZ, Tu YD, Wang LW (2018) Universal scalable sorption-based atmosphere water harvesting. Energy 165:387–395

    Article  Google Scholar 

  • Wu Q, Su W, Li Q, Tao Y, Li H (2021) Enabling continuous and improved solar-driven atmospheric water harvesting with Ti3C2-incorporated metal-organic framework monoliths. ACS Appl Mater Interfaces 13(32):38906–38915

    Article  CAS  Google Scholar 

  • Xing Q, Pan Y, Hu Y, Wang L (2020) Review of the biomolecular modification of the metal-organ-framework. Front Chem 8:642

    Article  CAS  Google Scholar 

  • Xu W, Yaghi OM (2020) Metal–organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent Sci 6(8):1348–1354

    Article  CAS  Google Scholar 

  • Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714

    Article  CAS  Google Scholar 

  • Zafar F, Sharmin E (eds) (2016) Metal-organic frameworks. BoD–Books on Demand

    Google Scholar 

  • Zhang P (2016) Adsorption and desorption isotherms. KE Group

    Google Scholar 

  • Zhang X, Chen Z, Liu X, Hanna SL, Wang X, Taheri-Ledari R, Maleki A, Li P, Farha OK (2020) A historical overview of the activation and porosity of metal–organic frameworks. Chem Soc Rev 49(20):7406–7427

    Article  CAS  Google Scholar 

  • Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463(7281):640–643

    Article  CAS  Google Scholar 

  • Zhou X, Lu H, Zhao F, Yu G (2020) Atmospheric water harvesting: a review of material and structural designs. ACS Mater Lett 2(7):671–684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from South Africa's National Research Foundation (NRF) No. 116679 and all the other affiliated organizations.

Declaration of Competing Interest

The authors disclose that they have no financially competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tanushri Chatterji , Edwin Makhado or Sadanand Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, S. et al. (2023). Metal-Oxide Frameworks for Atmospheric Water Harvesting. In: Fosso-Kankeu, E., Al Alili, A., Mittal, H., Mamba, B. (eds) Atmospheric Water Harvesting Development and Challenges. Water Science and Technology Library, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-031-21746-3_4

Download citation

Publish with us

Policies and ethics