Skip to main content

Freshwater Meiofauna—A Biota with Different Rules?

Abstract

Great divergences arise when comparing the ecology of meiofauna in freshwater and marine ecosystems. Emphasizing the main differences between freshwater meiofauna and their marine counterparts, we will go on a stepwise journey through three major frontiers in freshwater research, which in turn are hierarchically interrelated: biodiversity, community organization (e.g. food webs structure), and ecosystem processes (e.g. metabolism and organic carbon breakdown). The starting point of this chapter is one of the utmost frontiers, both in marine and freshwater research: meiofaunal diversity. Especially in freshwater ecosystems diversity becomes evident since, here, habitats extend as highly disconnected biotopes, each characterized by an often fundamentally different biocenosis. From the biodiversity level, we move up the theoretical hierarchy to assess the role of meiofauna as an integral part of benthic food webs. Recent research underlines the role of freshwater meiofauna as highly connected nodes and shows their pivotal role in the transfer of energy and carbon along food chains. Distributed over all trophic levels, this structure contrasts with the prevailing conception of meiofauna in food webs, where meiofauna often are considered rather marginal units. Finally, we apply allometric principles from the metabolic theory of ecology in order to assess the role of freshwater meiofauna in the functioning of the benthic systems. With a novel modelling framework we develop an analytical perspective, showing that secondary production of micro- and meiobenthic communities can predict microbial decomposition rates within the benthic interface. Our results demonstrate that productive micro- and meiobenthos act as catalysers in the system of organic carbon breakdown and recycling. These findings underline the relevance of freshwater meiofauna within the biogeochemical carbon cycle. The mechanistic forces behind the processes involved require future experimental research.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altherr E (1938) La faune des mines de Bex, avec étude spéciale des nematodes. Rev Suisse Zool 45:21

    Google Scholar 

  • Baird DJ, Hajibabaei M (2012) Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next generation DNA sequencing. Mol Ecol 21:2039–2044

    CrossRef  PubMed  Google Scholar 

  • Balsamo M, Artois T, Smith JP, Todaro MA, Guidi L, Leander BS, Van Steenkiste NW (2020) The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). Hydrobiologia 847:2613–2644

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251

    CrossRef  CAS  PubMed  Google Scholar 

  • Benke AC (1993) Concepts and patterns of invertebrate production in running waters. Int Ver Theor Angew Limnol 25:15–38

    Google Scholar 

  • Benke AC, Bruce Wallace J (2015) High secondary production in a Coastal Plain river is dominated by snag invertebrates and fuelled mainly by amorphous detritus. Freshw Biol 60:236–255

    CrossRef  Google Scholar 

  • Benke AC, Huryn AD (2010) Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. J North Am Benthol Soc 29:264–285

    CrossRef  Google Scholar 

  • Blackburn TM, Gaston KJ (1997) A critical assessment of the form of the interspecific relationship between abundance and body size in animals. J Anim Ecol 66:233–249

    CrossRef  Google Scholar 

  • Bleidorn C (2016) Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst Biodivers 14:1–8

    CrossRef  Google Scholar 

  • Bonaglia S, Nascimento FA, Bartoli M, Klawonn I, Brüchert V (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5:1–9

    CrossRef  Google Scholar 

  • Boyen J, Fink P, Mensens C, Hablützel PI, De Troch M (2020) Fatty acid bioconversion in harpacticoid copepods in a changing environment: a transcriptomic approach. Philos Trans R Soc B 375:20190645

    CrossRef  CAS  Google Scholar 

  • Brinke M, Höss S, Fink G, Ternes TA, Heininger P, Traunspurger W (2010) Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. Aquat Toxicol 99:126–137

    CrossRef  CAS  PubMed  Google Scholar 

  • Brinke M, Ristau K, Bergtold M, Höss S, Claus E, Heininger P, Traunspurger W (2011) Using meiofauna to assess pollutants in freshwater sediments: a microcosm study with cadmium. Environ Toxicol Chem 30:427–438

    CrossRef  CAS  PubMed  Google Scholar 

  • Brose U, Williams RJ, Martinez ND (2006) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236

    CrossRef  PubMed  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    CrossRef  Google Scholar 

  • Brown EA, Chain FJ, Zhan A, MacIsaac HJ, Cristescu ME (2016) Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in C anadian ports. Divers Distrib 22:1045–1059

    CrossRef  Google Scholar 

  • Brüchner-Hüttemann H, Ptatscheck C, Traunspurger W (2020) Meiofauna in stream habitats: temporal dynamics of abundance, biomass and secondary production in different substrate microhabitats in a first-order stream. Aquat Ecol 54:1079–1095

    CrossRef  Google Scholar 

  • Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, Chiari Y, Belkhir K, Ranwez V, Galtier N (2012) Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Res 12:834–845

    CrossRef  CAS  Google Scholar 

  • Castel J (1992) The meiofauna of coastal lagoon ecosystems and their importance in the food web. Vie Milieu/Life Environ 125–135

    Google Scholar 

  • Ceccherelli VU, Mistri M, Franzoi P (1994) Predation impact on the meiobenthic harpacticoid Canuella perplexa in a lagoon of the Po River Delta, Italy. Estuaries 17:283–287

    CrossRef  Google Scholar 

  • Cobb NA (1914) Nematodes and their relationships. USDA Yearbook of the Department of Agriculture, pp 457–490

    Google Scholar 

  • D’Hondt AS, Stock W, Blommaert L, Moens T, Sabbe K (2018) Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. Mar Environ Res 140:78–89

    CrossRef  CAS  PubMed  Google Scholar 

  • Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235

    CrossRef  Google Scholar 

  • De Man JG (1884) Die frei in der reinen Erde und im süssen Wasser lebenden Nematoden der Niederländischen Fauna: eine systematisch-faunistische Monographie. Hanse, Leiden, p 206

    Google Scholar 

  • Di Sabatino A, Gerecke R, Martin P (2000) The biology and ecology of lotic water mites (Hydrachnidia). Freshw Biol 44:47–62

    CrossRef  Google Scholar 

  • Dolbeth M, Cusson M, Sousa R, Pardal MA (2012) Secondary production as a tool for better understanding of aquatic ecosystems. Can J Fish Aquat Sci 69:1230–1253

    CrossRef  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    CrossRef  Google Scholar 

  • Du Preez G, Majdi N, Swart A, Traunspurger W, Fourie H (2017) Nematodes in caves: a historical perspective on their occurrence, distribution and ecological relevance. Nematology 19:627–644

    CrossRef  Google Scholar 

  • Estifanos TK, Traunspurger W, Peters L (2013) Selective feeding in nematodes: a stable isotope analysis of bacteria and algae as food sources for free-living nematodes. Nematology 15:1–13

    CrossRef  Google Scholar 

  • Feller RJ (2006) Weak meiofaunal trophic linkages in Crangon crangon and Carcinus maenas. J Exp Mar Biol Ecol 330:274–283

    CrossRef  Google Scholar 

  • Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshw Biol 54:830–847

    CrossRef  CAS  Google Scholar 

  • Gansfort B, Fontaneto D, Zhai M (2020) Meiofauna as a model to test paradigms of ecological metacommunity theory. Hydrobiologia 847:2645–2663

    CrossRef  Google Scholar 

  • Geisen S, Rosengarten J, Koller R, Mulder C, Urich T, Bonkowski M (2015) Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 17:4538–4546

    CrossRef  CAS  PubMed  Google Scholar 

  • Giere O (2009) Meiobenthology. The microscopic fauna in aquatic sediments. Springer-Verlag, Berlin, p 527

    Google Scholar 

  • Goldbogen JA, Cade DE, Wisniewska DM, Potvin J, Segre PS, Savoca MS, Hazen EL, Czapanskiy MF, Kahane-Rapport SR, DeRutier SL, Gero S, Tønnesen P, Gough WT, Hanson MB, Holt MM, Jensen FH, Simon M, Stimpert AK, Arranz P, Johnston DW, Nowacec DP, Parks SE, Visser F, Friedlander AS, Tyack PL, Madsen PT, Pyenson ND (2019) Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366:1367–1372

    CrossRef  CAS  PubMed  Google Scholar 

  • Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Safety 63:443–450

    CrossRef  CAS  PubMed  Google Scholar 

  • Heip CHR, Smol N (1975) On the importance of Protohydra leuckarti as a predator of meiobenthic populations. In: Persoone G, Jaspers E (eds) 10th European symposium on marine biology. Univerca Press, Wetteren, Ostend, Belgium, pp 285–296

    Google Scholar 

  • Hohberg K, Traunspurger W (2009) Foraging theory and partial consumption in a tardigrade–nematode system. Behav Ecol 20:884–890

    CrossRef  Google Scholar 

  • Höss S, Bergtold M, Haitzer M, Traunspurger W, Steinberg CE (2001) Refractory dissolved organic matter can influence the reproduction of Caenorhabditis elegans (Nematoda). Freshw Biol 46:1–10

    CrossRef  Google Scholar 

  • Höss S, Traunspurger W, Everin GFS, Jüttner I, Pfister G, Schramm KW (2004) Influence of 4-nonylphenol on the structure of nematode communities in freshwater microcosms. Environ Toxicol Chem 23:1268–1275

    CrossRef  PubMed  Google Scholar 

  • Höss S, Claus E, Von der Ohe PC, Brinke M, Güde H, Heininger P, Traunspurger W (2011) Nematode species at risk—a metric to assess pollution in soft sediments of freshwaters. Environ Int 37:940–949

    CrossRef  PubMed  Google Scholar 

  • Hudson CT, Gosse PH (1886) The Rotifera or wheel-animalcules (vol 1). Longmans, Green, p 144

    Google Scholar 

  • Kathol M, Fischer H, Weitere M (2011) Contribution of biofilm-dwelling consumers to pelagic–benthic coupling in a large river. Freshw Biol 56:1160–1172

    CrossRef  Google Scholar 

  • Kazemi-Dinan A, Schroeder F, Peters L, Majdi N, Traunspurger W (2014) The effect of trophic state and depth on periphytic nematode communities in lakes. Limnologica 44:49–57

    CrossRef  Google Scholar 

  • Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35:370–379

    CrossRef  Google Scholar 

  • Kolasa J (2002) Microturbellaria. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 1–14

    Google Scholar 

  • Kreuzinger-Janik B, Majdi N, Traunspurger W (2021) Distribution and diversity of meiofauna along an aquatic-terrestrial moss ecotone. Nematology 1:1–20

    Google Scholar 

  • Kristensen RM (2002) An introduction to Loricifera, Cycliophora, and Micrognathozoa. Integr Comp Biol 42:641–651

    CrossRef  PubMed  Google Scholar 

  • Leese F, Bouchez A, Abarenkov K, Altermatt F, Borja A, Bruce K, Ekrem T, Cimpor F Jr, Cimporová-Zatovicova Z, Costa FO, Durate S, Elbrecht V, Fontanedo D, Franc A, Geiger MF, Hering D, Kahlert M, Stroil BK, Weigand AM (2018) Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2.0: a perspective derived from the DNAqua-Net COST action. Adv Ecol Res 58:63–99

    CrossRef  Google Scholar 

  • Lim NKM, Tay YC, Srivathsan A, Tan JWT, Kwik JTB, Baloğlu B, Meier R, Yeo DC (2016) Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R Soc Open Sci 3:160635

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23(4):399–417

    CrossRef  Google Scholar 

  • Lubzens E, Marko A, Tietz A (1985) De novo synthesis of fatty acids in the rotifer Brachionus plicatilis. Aquaculture 47:27–37

    CrossRef  CAS  Google Scholar 

  • Majdi N, Traunspurger W (2017) Leaf fall affects the isotopic niches of meiofauna and macrofauna in a stream food web. Food Webs 10:5–14

    CrossRef  Google Scholar 

  • Majdi N, Threis I, Traunspurger W (2017) It's the little things that count: Meiofaunal density and production in the sediment of two headwater streams. Limnol Oceanogr 62(1): 151–163

    Google Scholar 

  • Majdi N, Tackx M, Buffan-Dubau E (2012) Trophic positioning and microphytobenthic carbon uptake of biofilm-dwelling meiofauna in a temperate river. Freshw Biol 57:1180–1190

    CrossRef  CAS  Google Scholar 

  • Majdi N, Colls M, Weiss L, Acuña V, Sabater S, Traunspurger W (2020a) Duration and frequency of non-flow periods affect the abundance and diversity of stream meiofauna. Freshw Biol 65:1906–1922

    CrossRef  Google Scholar 

  • Majdi N, Schmid-Araya JM, Traunspurger W (2020b) Preface: Patterns and processes of meiofauna in freshwater ecosystems. Hydrobiologia 847:2587–2595

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    CrossRef  CAS  PubMed  Google Scholar 

  • Martins PK, da Silva Bandeira MG, Palma-Silva C, Albertoni EF (2019) Microcrustacean metacommunities in urban temporary ponds. Aquat Sci 81:56

    CrossRef  Google Scholar 

  • Mathieu M, Leflaive J, Ten-Hage L, De Wit R, Buffan-Dubau E (2007) Free-living nematodes affect oxygen turnover of artificial diatom biofilms. Aquat Microb Ecol 49:281–291

    CrossRef  Google Scholar 

  • McIntyre AD, Murison DJ (1973) The meiofauna of a flatfish nursery ground. J Mar Biol Assoc UK 53:93–118

    CrossRef  Google Scholar 

  • Menzel R, Geweiler D, Sass A, Simsek D, Ruess L (2018) Nematodes as important source for omega-3 long-chain fatty acids in the soil food web and the impact in nutrition for higher trophic levels. Front Ecol Evol 6:96

    CrossRef  Google Scholar 

  • Meschkat A (1934) Der Bewuchs in den Rörichten des Plattensees. Arch Hydrobiol 27:436–517

    Google Scholar 

  • Micoletzky H (1911) Zur Kenntnis des Faistenauer Hintersees bei Salzburg, mit besonderer Berücksichtigung faunistischer und fischereilicher Verhältnisse. Int Rev Ges Hydrobiol Hydrogr 3:506–542

    CrossRef  Google Scholar 

  • Morin A, Bourassa N (1992) Modèles empiriques de la production annuelle et du rapport P/B d’invertébrés benthiques d’eau courante. Can J Fish Aquat Sci 49:532–539

    CrossRef  Google Scholar 

  • Nascimento FJ, Näslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol Oceanogr 57:338–346

    CrossRef  CAS  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    CrossRef  CAS  PubMed  Google Scholar 

  • Neury-Ormanni J, Vedrenne J, Morin S (2016) Who eats who in biofilms? Exploring the drivers of microalgal and micro-meiofaunal abundance. Bot Lett 163:83–92

    CrossRef  CAS  Google Scholar 

  • Neury-Ormanni J, Vedrenne J, Wagner M, Jan G, Morin S (2020) Micro-meiofauna morphofunctional traits linked to trophic activity. Hydrobiologia 847:2725–2736

    CrossRef  Google Scholar 

  • Neutel AM, Heesterbeek JA, Van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Beredese F, De Ruiter PC (2007) Reconciling complexity with stability in naturally assembling food webs. Nature 449:599–602

    CrossRef  CAS  PubMed  Google Scholar 

  • O’Gorman EJ, Enright RA, Emmerson MC (2008) Predator diversity enhances secondary production and decreases the likelihood of trophic cascades. Oecologia 158:557–567

    CrossRef  PubMed  Google Scholar 

  • Otto S, Harms H, Wick LY (2017) Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. FEMS Microbiol Ecol 93: fiw241

    Google Scholar 

  • Palmer MA (1990) Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J North Am Benthol Soc 9:17–25

    CrossRef  Google Scholar 

  • Papakostas S, Michaloudi E, Proios K, Brehm M, Verhage L, Rota J, Peña C, Stamou G, Pritchard VL, Fotaneto D, Declerck SA (2016) Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Syst Biol 65:508–524

    CrossRef  PubMed  Google Scholar 

  • Pennak RW (1940) Ecology of the microscopic Metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol Monogr 10:537–615

    CrossRef  CAS  Google Scholar 

  • Peralta-Maraver I, Galloway J, Posselt M, Arnon S, Reiss J, Lewandowski J, Robertson AL (2018a) Environmental filtering and community delineation in the streambed ecotone. Sci Rep 8:1–11

    CrossRef  CAS  Google Scholar 

  • Peralta-Maraver I, Reiss J, Robertson AL (2018b) Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci Total Environ 610:267–275

    CrossRef  PubMed  Google Scholar 

  • Peralta-Maraver I, Posselt M, Perkins DM, Robertson AL (2019a) Mapping micro-pollutants and their impacts on the size structure of streambed communities. Water 11:2610

    CrossRef  CAS  Google Scholar 

  • Peralta-Maraver I, Robertson AL, Perkins DM (2019b) Depth and vertical hydrodynamics constrain the size structure of a lowland streambed community. Biol Lett 15(7):20190317

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DM, Durance I, Edwards FK, Grey J, Hildrew AG, Jackson M, Jones JI, Lauridsen RB, Layer-Dobra K, Thompson MSA, Woodward G (2018) Bending the rules: exploitation of allochthonous resources by a top-predator modifies size-abundance scaling in stream food webs. Ecol Lett 21:1771–1780

    CrossRef  PubMed  Google Scholar 

  • Petchey OL, Morin PJ, Hulot FD (2002) Contributions of aquatic model systems to our understanding of biodiversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning—synthesis and perspectives. Oxford University Press, Oxford, UK, pp 127–138

    Google Scholar 

  • Peters L, Hillebrand H, Traunspurger W (2007) Spatial variation of grazer effects on epilithic meiofauna and algae. J North Am Benthol Soc 26:78–91

    CrossRef  Google Scholar 

  • Peters L, Faust C, Traunspurger W (2012) Changes in community composition, carbon and nitrogen stable isotope signatures and feeding strategy in epilithic aquatic nematodes along a depth gradient. Aquat Ecol 46:371–384

    CrossRef  CAS  Google Scholar 

  • Pinckney JL, Carman KR, Lumsden SE, Hymel SN (2003) Microalgal-meiofaunal trophic relationships in muddy intertidal estuarine sediments. Aquat Microb Ecol 31:99–108

    CrossRef  Google Scholar 

  • Ptatscheck C, Traunspurger W (2020) The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia 847:3519–3547

    CrossRef  Google Scholar 

  • Ptatscheck C, Putzki H, Traunspurger W (2017) Impact of deposit-feeding chironomid larvae (Chironomus riparius) on meiofauna and protozoans. Freshw Sci 36:796–804

    CrossRef  Google Scholar 

  • Ptatscheck C, Brüchner-Hüttemann H, Kreuzinger-Janik B, Weber S, Traunspurger W (2020) Are meiofauna a standard meal for macroinvertebrates and juvenile fish? Hydrobiologia 847:2755–2778

    CrossRef  Google Scholar 

  • Reiss J, Perkins DM, Fussmann KE, Krause S, Canhoto C, Romeijn P, Robertson AL (2019) Groundwater flooding: Ecosystem structure following an extreme recharge event. Sci Total Environ 652:1252–1260

    CrossRef  PubMed  Google Scholar 

  • Riemann F, Helmke E (2002) Symbiotic relations of sediment‐agglutinating nematodes and bacteria in detrital habitats: the enzyme‐sharing concept. Mar Ecol 23(2): 93–113

    Google Scholar 

  • Reuman DC, Mulder C, Raffaelli D, Cohen JE (2008) Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol Lett 11:1216–1228

    CrossRef  PubMed  Google Scholar 

  • Robertson AL, Rundle SD, Schmid-Araya JM (2000) Putting the meio-into stream ecology: current findings and future directions for lotic meiofaunal research. Freshw Biol 44:177–183

    CrossRef  Google Scholar 

  • Romaní AM, Fund K, Artigas J, Schwartz T, Sabater S, Obst U (2008) Relevance of polymeric matrix enzymes during biofilm formation. Microb Ecol 56:427–436

    Google Scholar 

  • Rundle SD, Robertson AL, Schmid-Araya JM (2002) Freshwater meiofauna. Backhuys, Leiden, p 369

    Google Scholar 

  • Sánchez-Carmona R, Encina L, Rodríguez-Ruiz A, Rodríguez-Sánchez MV, Granado-Lorencio C (2012) Food web structure in mediterranean streams: exploring stabilizing forces in these ecosystems. Aquat Ecol 46:311–324

    CrossRef  Google Scholar 

  • Sars GO (1867) Histoire naturelle des crustacés d'eau douce de Norvège. Chr. Johnsen, Norway, p 145

    Google Scholar 

  • Schenk J, Fontaneto D (2020) Biodiversity analyses in freshwater meiofauna through DNA sequence data. Hydrobiologia 847:2597–2611

    CrossRef  CAS  Google Scholar 

  • Schenk J, Kleinbölting N, Traunspurger W (2020) Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities. Ecol Evol 10:2885–2899

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schmid PE, Tokeshi M, Schmid-Araya JM (2000) Relation between population density and body size in stream communities. Science 289:1557–1560

    CrossRef  CAS  PubMed  Google Scholar 

  • Schmid-Araya JM (1997) Temporal and spatial dynamics of meiofaunal assemblages in the hyporheic inter- stitial of a gravel stream. In: Gibert J, Mathieu J, Fournier F (eds) Groundwater/surface water ecotones: biological and hydrological interactions and management options. Cambridge University Press, Cambridge, pp 29–36

    CrossRef  Google Scholar 

  • Schmid-Araya JM, Hildrew AG, Robertson A, Schmid PE, Winterbottom J (2002) The importance of meiofauna in food webs: evidence from an acid stream. Ecology 83:1271–1285

    CrossRef  Google Scholar 

  • Schmid-Araya JM, Schmid PE, Tod SP, Esteban GF (2016) Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97:3099–3109

    CrossRef  PubMed  Google Scholar 

  • Schmid-Araya JM, Schmid PE, Majdi N, Traunspurger W (2020) Biomass and production of freshwater meiofauna: a review and a new allometric model. Hydrobiologia 847:2681–2703

    CrossRef  CAS  Google Scholar 

  • Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol 502:12–25

    CrossRef  Google Scholar 

  • Semprucci F, Frontalini F, Sbrocca C, Du Châtelet EA, Bout-Roumazeilles V, Coccioni R, Balsamo M (2015) Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environ Monit Assess 187:1–19

    CrossRef  CAS  Google Scholar 

  • Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J 4:327–336

    CrossRef  PubMed  Google Scholar 

  • Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, Hallwachs W, Goldin GB, Hajibabaei M (2015) Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci Rep 5:9687

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibly RM, Brown JH, Kodric-Brown A (2012) Metabolic ecology: a scaling approach. John Wiley & Sons, Chichester, UK, p 256

    CrossRef  Google Scholar 

  • Sonne AT, Rasmussen JJ, Höss S, Traunspurger W, Bjerg PL, McKnight US (2018) Linking ecological health to co-occurring organic and inorganic chemical stressors in a groundwater-fed stream system. Sci Total Environ 642:1153–1162

    CrossRef  CAS  PubMed  Google Scholar 

  • Stead TK, Schmid-Araya JM, Hildrew AG (2005) Secondary production of a stream metazoan community: does the meiofauna make a difference. Limnol Oceanogr 50:398–403

    CrossRef  Google Scholar 

  • Strayer DL, May SE, Nielsen P, Wollheim W, Hausam S (1997) Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch Hydrobiol 140:131–144

    CrossRef  CAS  Google Scholar 

  • Tang CQ, Leasi F, Obertegger U, Kieneke A, Barraclough TG, Fontaneto D (2012) The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci USA 109:16208–16212

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol Indic 32:131–139

    CrossRef  CAS  Google Scholar 

  • Traunspurger W, Bergtold M, Goedkoop W (1997) The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112:118–122

    CrossRef  PubMed  Google Scholar 

  • Traunspurger W, Wilden B, Majdi N (2020) An overview of meiofaunal and nematode distribution patterns in lake ecosystems differing in their trophic state. Hydrobiologia 847:2665–2679

    CrossRef  CAS  Google Scholar 

  • Tucker MA, Rogers TL (2014) Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc Royal Soc B 281:20142103

    CrossRef  Google Scholar 

  • Weber S, Traunspurger W (2013) Food choice of two bacteria-feeding nematode species dependent on food source, food density and interspecific competition. Nematology 15:291–301

    CrossRef  Google Scholar 

  • Weber S, Traunspurger W (2014) Top-down control of a meiobenthic community by two juvenile freshwater fish species. Aquat Ecol 48:465–480

    CrossRef  CAS  Google Scholar 

  • Weber S, Traunspurger W (2015) The effects of predation by juvenile fish on the meiobenthic community structure in a natural pond. Freshw Biol 60:2392–2409

    CrossRef  Google Scholar 

  • Weigand AM, Macher JN (2018) A DNA metabarcoding protocol for hyporheic freshwater meiofauna: evaluating highly degenerate COI primers and replication strategy. Metabarcod Metagenom 2:e26869

    CrossRef  Google Scholar 

  • Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, Geiger MF, Grabowski M, Rimet F, Rulik B, Strand M, Szucsich N, Weigand AM, Willassen E, Wyle SA, Bouchez A, Borja A, Ciamporova-Zat’ovicova Z, Ferreira S, Dijkstra K-DB, Eisendle U, Freyhof J, Gadawski P, Graf W, Haegerbaeumer A, van der Hoorn B, Japoshvili B, Keresztes L, Keskin E, Leese F, Macher JN, Mamos T, Paz G, Pesic V, Pfannkuchen DM, Pfannkuchen MA, Price BW, Rinkevich B, Texeira MAL, Varbíró G, Ekrem T (2019) DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Sci Total Environ 678:499–524

    Google Scholar 

  • Weitere M, Erken M, Majdi N, Arndt H, Norf H, Reinshagen M, Traunspurger W, Wey JK (2018) The food web perspective on aquatic biofilms. Ecol Monogr 88:543–559

    CrossRef  Google Scholar 

  • Woodward G, Warren PH (2007) Body size and predatory interactions in freshwaters: scaling from individuals to communities. In: Hildrew AG, Raffaelli D, Edmonds-Brown R (eds) Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge, UK, pp 98–117

    CrossRef  Google Scholar 

  • Yvon-Durocher G, Reiss J, Blanchard J, Ebenman B, Perkins DM, Reuman DC, Woodward G, Petchey OL (2011) Across ecosystem comparisons of size structure: methods, approaches and prospects. Oikos 120:550–563

    CrossRef  Google Scholar 

  • Zotz G, Traunspurger W (2016) What´s in the tank? Nematodes and other major components of the meiofauna of bromeliad phytotelms in lowland Panama. BMC Ecol 16:1–9

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Peralta-Maraver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peralta-Maraver, I., Traunspurger, W., Robertson, A.L., Giere, O., Majdi, N. (2023). Freshwater Meiofauna—A Biota with Different Rules?. In: Giere, O., Schratzberger, M. (eds) New Horizons in Meiobenthos Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21622-0_6

Download citation