Abstract
Great divergences arise when comparing the ecology of meiofauna in freshwater and marine ecosystems. Emphasizing the main differences between freshwater meiofauna and their marine counterparts, we will go on a stepwise journey through three major frontiers in freshwater research, which in turn are hierarchically interrelated: biodiversity, community organization (e.g. food webs structure), and ecosystem processes (e.g. metabolism and organic carbon breakdown). The starting point of this chapter is one of the utmost frontiers, both in marine and freshwater research: meiofaunal diversity. Especially in freshwater ecosystems diversity becomes evident since, here, habitats extend as highly disconnected biotopes, each characterized by an often fundamentally different biocenosis. From the biodiversity level, we move up the theoretical hierarchy to assess the role of meiofauna as an integral part of benthic food webs. Recent research underlines the role of freshwater meiofauna as highly connected nodes and shows their pivotal role in the transfer of energy and carbon along food chains. Distributed over all trophic levels, this structure contrasts with the prevailing conception of meiofauna in food webs, where meiofauna often are considered rather marginal units. Finally, we apply allometric principles from the metabolic theory of ecology in order to assess the role of freshwater meiofauna in the functioning of the benthic systems. With a novel modelling framework we develop an analytical perspective, showing that secondary production of micro- and meiobenthic communities can predict microbial decomposition rates within the benthic interface. Our results demonstrate that productive micro- and meiobenthos act as catalysers in the system of organic carbon breakdown and recycling. These findings underline the relevance of freshwater meiofauna within the biogeochemical carbon cycle. The mechanistic forces behind the processes involved require future experimental research.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Altherr E (1938) La faune des mines de Bex, avec étude spéciale des nematodes. Rev Suisse Zool 45:21
Baird DJ, Hajibabaei M (2012) Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next generation DNA sequencing. Mol Ecol 21:2039–2044
Balsamo M, Artois T, Smith JP, Todaro MA, Guidi L, Leander BS, Van Steenkiste NW (2020) The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). Hydrobiologia 847:2613–2644
Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251
Benke AC (1993) Concepts and patterns of invertebrate production in running waters. Int Ver Theor Angew Limnol 25:15–38
Benke AC, Bruce Wallace J (2015) High secondary production in a Coastal Plain river is dominated by snag invertebrates and fuelled mainly by amorphous detritus. Freshw Biol 60:236–255
Benke AC, Huryn AD (2010) Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. J North Am Benthol Soc 29:264–285
Blackburn TM, Gaston KJ (1997) A critical assessment of the form of the interspecific relationship between abundance and body size in animals. J Anim Ecol 66:233–249
Bleidorn C (2016) Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst Biodivers 14:1–8
Bonaglia S, Nascimento FA, Bartoli M, Klawonn I, Brüchert V (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5:1–9
Boyen J, Fink P, Mensens C, Hablützel PI, De Troch M (2020) Fatty acid bioconversion in harpacticoid copepods in a changing environment: a transcriptomic approach. Philos Trans R Soc B 375:20190645
Brinke M, Höss S, Fink G, Ternes TA, Heininger P, Traunspurger W (2010) Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. Aquat Toxicol 99:126–137
Brinke M, Ristau K, Bergtold M, Höss S, Claus E, Heininger P, Traunspurger W (2011) Using meiofauna to assess pollutants in freshwater sediments: a microcosm study with cadmium. Environ Toxicol Chem 30:427–438
Brose U, Williams RJ, Martinez ND (2006) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789
Brown EA, Chain FJ, Zhan A, MacIsaac HJ, Cristescu ME (2016) Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in C anadian ports. Divers Distrib 22:1045–1059
Brüchner-Hüttemann H, Ptatscheck C, Traunspurger W (2020) Meiofauna in stream habitats: temporal dynamics of abundance, biomass and secondary production in different substrate microhabitats in a first-order stream. Aquat Ecol 54:1079–1095
Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, Chiari Y, Belkhir K, Ranwez V, Galtier N (2012) Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Res 12:834–845
Castel J (1992) The meiofauna of coastal lagoon ecosystems and their importance in the food web. Vie Milieu/Life Environ 125–135
Ceccherelli VU, Mistri M, Franzoi P (1994) Predation impact on the meiobenthic harpacticoid Canuella perplexa in a lagoon of the Po River Delta, Italy. Estuaries 17:283–287
Cobb NA (1914) Nematodes and their relationships. USDA Yearbook of the Department of Agriculture, pp 457–490
D’Hondt AS, Stock W, Blommaert L, Moens T, Sabbe K (2018) Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. Mar Environ Res 140:78–89
Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235
De Man JG (1884) Die frei in der reinen Erde und im süssen Wasser lebenden Nematoden der Niederländischen Fauna: eine systematisch-faunistische Monographie. Hanse, Leiden, p 206
Di Sabatino A, Gerecke R, Martin P (2000) The biology and ecology of lotic water mites (Hydrachnidia). Freshw Biol 44:47–62
Dolbeth M, Cusson M, Sousa R, Pardal MA (2012) Secondary production as a tool for better understanding of aquatic ecosystems. Can J Fish Aquat Sci 69:1230–1253
Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567
Du Preez G, Majdi N, Swart A, Traunspurger W, Fourie H (2017) Nematodes in caves: a historical perspective on their occurrence, distribution and ecological relevance. Nematology 19:627–644
Estifanos TK, Traunspurger W, Peters L (2013) Selective feeding in nematodes: a stable isotope analysis of bacteria and algae as food sources for free-living nematodes. Nematology 15:1–13
Feller RJ (2006) Weak meiofaunal trophic linkages in Crangon crangon and Carcinus maenas. J Exp Mar Biol Ecol 330:274–283
Galassi DMP, Stoch F, Fiasca B, Di Lorenzo T, Gattone E (2009) Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshw Biol 54:830–847
Gansfort B, Fontaneto D, Zhai M (2020) Meiofauna as a model to test paradigms of ecological metacommunity theory. Hydrobiologia 847:2645–2663
Geisen S, Rosengarten J, Koller R, Mulder C, Urich T, Bonkowski M (2015) Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 17:4538–4546
Giere O (2009) Meiobenthology. The microscopic fauna in aquatic sediments. Springer-Verlag, Berlin, p 527
Goldbogen JA, Cade DE, Wisniewska DM, Potvin J, Segre PS, Savoca MS, Hazen EL, Czapanskiy MF, Kahane-Rapport SR, DeRutier SL, Gero S, Tønnesen P, Gough WT, Hanson MB, Holt MM, Jensen FH, Simon M, Stimpert AK, Arranz P, Johnston DW, Nowacec DP, Parks SE, Visser F, Friedlander AS, Tyack PL, Madsen PT, Pyenson ND (2019) Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366:1367–1372
Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Safety 63:443–450
Heip CHR, Smol N (1975) On the importance of Protohydra leuckarti as a predator of meiobenthic populations. In: Persoone G, Jaspers E (eds) 10th European symposium on marine biology. Univerca Press, Wetteren, Ostend, Belgium, pp 285–296
Hohberg K, Traunspurger W (2009) Foraging theory and partial consumption in a tardigrade–nematode system. Behav Ecol 20:884–890
Höss S, Bergtold M, Haitzer M, Traunspurger W, Steinberg CE (2001) Refractory dissolved organic matter can influence the reproduction of Caenorhabditis elegans (Nematoda). Freshw Biol 46:1–10
Höss S, Traunspurger W, Everin GFS, Jüttner I, Pfister G, Schramm KW (2004) Influence of 4-nonylphenol on the structure of nematode communities in freshwater microcosms. Environ Toxicol Chem 23:1268–1275
Höss S, Claus E, Von der Ohe PC, Brinke M, Güde H, Heininger P, Traunspurger W (2011) Nematode species at risk—a metric to assess pollution in soft sediments of freshwaters. Environ Int 37:940–949
Hudson CT, Gosse PH (1886) The Rotifera or wheel-animalcules (vol 1). Longmans, Green, p 144
Kathol M, Fischer H, Weitere M (2011) Contribution of biofilm-dwelling consumers to pelagic–benthic coupling in a large river. Freshw Biol 56:1160–1172
Kazemi-Dinan A, Schroeder F, Peters L, Majdi N, Traunspurger W (2014) The effect of trophic state and depth on periphytic nematode communities in lakes. Limnologica 44:49–57
Khan Z, Kim YH (2007) A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol 35:370–379
Kolasa J (2002) Microturbellaria. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 1–14
Kreuzinger-Janik B, Majdi N, Traunspurger W (2021) Distribution and diversity of meiofauna along an aquatic-terrestrial moss ecotone. Nematology 1:1–20
Kristensen RM (2002) An introduction to Loricifera, Cycliophora, and Micrognathozoa. Integr Comp Biol 42:641–651
Leese F, Bouchez A, Abarenkov K, Altermatt F, Borja A, Bruce K, Ekrem T, Cimpor F Jr, Cimporová-Zatovicova Z, Costa FO, Durate S, Elbrecht V, Fontanedo D, Franc A, Geiger MF, Hering D, Kahlert M, Stroil BK, Weigand AM (2018) Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2.0: a perspective derived from the DNAqua-Net COST action. Adv Ecol Res 58:63–99
Lim NKM, Tay YC, Srivathsan A, Tan JWT, Kwik JTB, Baloğlu B, Meier R, Yeo DC (2016) Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R Soc Open Sci 3:160635
Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23(4):399–417
Lubzens E, Marko A, Tietz A (1985) De novo synthesis of fatty acids in the rotifer Brachionus plicatilis. Aquaculture 47:27–37
Majdi N, Traunspurger W (2017) Leaf fall affects the isotopic niches of meiofauna and macrofauna in a stream food web. Food Webs 10:5–14
Majdi N, Threis I, Traunspurger W (2017) It's the little things that count: Meiofaunal density and production in the sediment of two headwater streams. Limnol Oceanogr 62(1): 151–163
Majdi N, Tackx M, Buffan-Dubau E (2012) Trophic positioning and microphytobenthic carbon uptake of biofilm-dwelling meiofauna in a temperate river. Freshw Biol 57:1180–1190
Majdi N, Colls M, Weiss L, Acuña V, Sabater S, Traunspurger W (2020a) Duration and frequency of non-flow periods affect the abundance and diversity of stream meiofauna. Freshw Biol 65:1906–1922
Majdi N, Schmid-Araya JM, Traunspurger W (2020b) Preface: Patterns and processes of meiofauna in freshwater ecosystems. Hydrobiologia 847:2587–2595
Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402
Martins PK, da Silva Bandeira MG, Palma-Silva C, Albertoni EF (2019) Microcrustacean metacommunities in urban temporary ponds. Aquat Sci 81:56
Mathieu M, Leflaive J, Ten-Hage L, De Wit R, Buffan-Dubau E (2007) Free-living nematodes affect oxygen turnover of artificial diatom biofilms. Aquat Microb Ecol 49:281–291
McIntyre AD, Murison DJ (1973) The meiofauna of a flatfish nursery ground. J Mar Biol Assoc UK 53:93–118
Menzel R, Geweiler D, Sass A, Simsek D, Ruess L (2018) Nematodes as important source for omega-3 long-chain fatty acids in the soil food web and the impact in nutrition for higher trophic levels. Front Ecol Evol 6:96
Meschkat A (1934) Der Bewuchs in den Rörichten des Plattensees. Arch Hydrobiol 27:436–517
Micoletzky H (1911) Zur Kenntnis des Faistenauer Hintersees bei Salzburg, mit besonderer Berücksichtigung faunistischer und fischereilicher Verhältnisse. Int Rev Ges Hydrobiol Hydrogr 3:506–542
Morin A, Bourassa N (1992) Modèles empiriques de la production annuelle et du rapport P/B d’invertébrés benthiques d’eau courante. Can J Fish Aquat Sci 49:532–539
Nascimento FJ, Näslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol Oceanogr 57:338–346
Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122
Neury-Ormanni J, Vedrenne J, Morin S (2016) Who eats who in biofilms? Exploring the drivers of microalgal and micro-meiofaunal abundance. Bot Lett 163:83–92
Neury-Ormanni J, Vedrenne J, Wagner M, Jan G, Morin S (2020) Micro-meiofauna morphofunctional traits linked to trophic activity. Hydrobiologia 847:2725–2736
Neutel AM, Heesterbeek JA, Van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Beredese F, De Ruiter PC (2007) Reconciling complexity with stability in naturally assembling food webs. Nature 449:599–602
O’Gorman EJ, Enright RA, Emmerson MC (2008) Predator diversity enhances secondary production and decreases the likelihood of trophic cascades. Oecologia 158:557–567
Otto S, Harms H, Wick LY (2017) Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. FEMS Microbiol Ecol 93: fiw241
Palmer MA (1990) Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J North Am Benthol Soc 9:17–25
Papakostas S, Michaloudi E, Proios K, Brehm M, Verhage L, Rota J, Peña C, Stamou G, Pritchard VL, Fotaneto D, Declerck SA (2016) Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Syst Biol 65:508–524
Pennak RW (1940) Ecology of the microscopic Metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol Monogr 10:537–615
Peralta-Maraver I, Galloway J, Posselt M, Arnon S, Reiss J, Lewandowski J, Robertson AL (2018a) Environmental filtering and community delineation in the streambed ecotone. Sci Rep 8:1–11
Peralta-Maraver I, Reiss J, Robertson AL (2018b) Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci Total Environ 610:267–275
Peralta-Maraver I, Posselt M, Perkins DM, Robertson AL (2019a) Mapping micro-pollutants and their impacts on the size structure of streambed communities. Water 11:2610
Peralta-Maraver I, Robertson AL, Perkins DM (2019b) Depth and vertical hydrodynamics constrain the size structure of a lowland streambed community. Biol Lett 15(7):20190317
Perkins DM, Durance I, Edwards FK, Grey J, Hildrew AG, Jackson M, Jones JI, Lauridsen RB, Layer-Dobra K, Thompson MSA, Woodward G (2018) Bending the rules: exploitation of allochthonous resources by a top-predator modifies size-abundance scaling in stream food webs. Ecol Lett 21:1771–1780
Petchey OL, Morin PJ, Hulot FD (2002) Contributions of aquatic model systems to our understanding of biodiversity and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning—synthesis and perspectives. Oxford University Press, Oxford, UK, pp 127–138
Peters L, Hillebrand H, Traunspurger W (2007) Spatial variation of grazer effects on epilithic meiofauna and algae. J North Am Benthol Soc 26:78–91
Peters L, Faust C, Traunspurger W (2012) Changes in community composition, carbon and nitrogen stable isotope signatures and feeding strategy in epilithic aquatic nematodes along a depth gradient. Aquat Ecol 46:371–384
Pinckney JL, Carman KR, Lumsden SE, Hymel SN (2003) Microalgal-meiofaunal trophic relationships in muddy intertidal estuarine sediments. Aquat Microb Ecol 31:99–108
Ptatscheck C, Traunspurger W (2020) The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia 847:3519–3547
Ptatscheck C, Putzki H, Traunspurger W (2017) Impact of deposit-feeding chironomid larvae (Chironomus riparius) on meiofauna and protozoans. Freshw Sci 36:796–804
Ptatscheck C, Brüchner-Hüttemann H, Kreuzinger-Janik B, Weber S, Traunspurger W (2020) Are meiofauna a standard meal for macroinvertebrates and juvenile fish? Hydrobiologia 847:2755–2778
Reiss J, Perkins DM, Fussmann KE, Krause S, Canhoto C, Romeijn P, Robertson AL (2019) Groundwater flooding: Ecosystem structure following an extreme recharge event. Sci Total Environ 652:1252–1260
Riemann F, Helmke E (2002) Symbiotic relations of sediment‐agglutinating nematodes and bacteria in detrital habitats: the enzyme‐sharing concept. Mar Ecol 23(2): 93–113
Reuman DC, Mulder C, Raffaelli D, Cohen JE (2008) Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol Lett 11:1216–1228
Robertson AL, Rundle SD, Schmid-Araya JM (2000) Putting the meio-into stream ecology: current findings and future directions for lotic meiofaunal research. Freshw Biol 44:177–183
Romaní AM, Fund K, Artigas J, Schwartz T, Sabater S, Obst U (2008) Relevance of polymeric matrix enzymes during biofilm formation. Microb Ecol 56:427–436
Rundle SD, Robertson AL, Schmid-Araya JM (2002) Freshwater meiofauna. Backhuys, Leiden, p 369
Sánchez-Carmona R, Encina L, Rodríguez-Ruiz A, Rodríguez-Sánchez MV, Granado-Lorencio C (2012) Food web structure in mediterranean streams: exploring stabilizing forces in these ecosystems. Aquat Ecol 46:311–324
Sars GO (1867) Histoire naturelle des crustacés d'eau douce de Norvège. Chr. Johnsen, Norway, p 145
Schenk J, Fontaneto D (2020) Biodiversity analyses in freshwater meiofauna through DNA sequence data. Hydrobiologia 847:2597–2611
Schenk J, Kleinbölting N, Traunspurger W (2020) Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities. Ecol Evol 10:2885–2899
Schmid PE, Tokeshi M, Schmid-Araya JM (2000) Relation between population density and body size in stream communities. Science 289:1557–1560
Schmid-Araya JM (1997) Temporal and spatial dynamics of meiofaunal assemblages in the hyporheic inter- stitial of a gravel stream. In: Gibert J, Mathieu J, Fournier F (eds) Groundwater/surface water ecotones: biological and hydrological interactions and management options. Cambridge University Press, Cambridge, pp 29–36
Schmid-Araya JM, Hildrew AG, Robertson A, Schmid PE, Winterbottom J (2002) The importance of meiofauna in food webs: evidence from an acid stream. Ecology 83:1271–1285
Schmid-Araya JM, Schmid PE, Tod SP, Esteban GF (2016) Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97:3099–3109
Schmid-Araya JM, Schmid PE, Majdi N, Traunspurger W (2020) Biomass and production of freshwater meiofauna: a review and a new allometric model. Hydrobiologia 847:2681–2703
Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol 502:12–25
Semprucci F, Frontalini F, Sbrocca C, Du Châtelet EA, Bout-Roumazeilles V, Coccioni R, Balsamo M (2015) Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environ Monit Assess 187:1–19
Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J 4:327–336
Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, Hallwachs W, Goldin GB, Hajibabaei M (2015) Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci Rep 5:9687
Sibly RM, Brown JH, Kodric-Brown A (2012) Metabolic ecology: a scaling approach. John Wiley & Sons, Chichester, UK, p 256
Sonne AT, Rasmussen JJ, Höss S, Traunspurger W, Bjerg PL, McKnight US (2018) Linking ecological health to co-occurring organic and inorganic chemical stressors in a groundwater-fed stream system. Sci Total Environ 642:1153–1162
Stead TK, Schmid-Araya JM, Hildrew AG (2005) Secondary production of a stream metazoan community: does the meiofauna make a difference. Limnol Oceanogr 50:398–403
Strayer DL, May SE, Nielsen P, Wollheim W, Hausam S (1997) Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch Hydrobiol 140:131–144
Tang CQ, Leasi F, Obertegger U, Kieneke A, Barraclough TG, Fontaneto D (2012) The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci USA 109:16208–16212
Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol Indic 32:131–139
Traunspurger W, Bergtold M, Goedkoop W (1997) The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112:118–122
Traunspurger W, Wilden B, Majdi N (2020) An overview of meiofaunal and nematode distribution patterns in lake ecosystems differing in their trophic state. Hydrobiologia 847:2665–2679
Tucker MA, Rogers TL (2014) Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc Royal Soc B 281:20142103
Weber S, Traunspurger W (2013) Food choice of two bacteria-feeding nematode species dependent on food source, food density and interspecific competition. Nematology 15:291–301
Weber S, Traunspurger W (2014) Top-down control of a meiobenthic community by two juvenile freshwater fish species. Aquat Ecol 48:465–480
Weber S, Traunspurger W (2015) The effects of predation by juvenile fish on the meiobenthic community structure in a natural pond. Freshw Biol 60:2392–2409
Weigand AM, Macher JN (2018) A DNA metabarcoding protocol for hyporheic freshwater meiofauna: evaluating highly degenerate COI primers and replication strategy. Metabarcod Metagenom 2:e26869
Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, Geiger MF, Grabowski M, Rimet F, Rulik B, Strand M, Szucsich N, Weigand AM, Willassen E, Wyle SA, Bouchez A, Borja A, Ciamporova-Zat’ovicova Z, Ferreira S, Dijkstra K-DB, Eisendle U, Freyhof J, Gadawski P, Graf W, Haegerbaeumer A, van der Hoorn B, Japoshvili B, Keresztes L, Keskin E, Leese F, Macher JN, Mamos T, Paz G, Pesic V, Pfannkuchen DM, Pfannkuchen MA, Price BW, Rinkevich B, Texeira MAL, Varbíró G, Ekrem T (2019) DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Sci Total Environ 678:499–524
Weitere M, Erken M, Majdi N, Arndt H, Norf H, Reinshagen M, Traunspurger W, Wey JK (2018) The food web perspective on aquatic biofilms. Ecol Monogr 88:543–559
Woodward G, Warren PH (2007) Body size and predatory interactions in freshwaters: scaling from individuals to communities. In: Hildrew AG, Raffaelli D, Edmonds-Brown R (eds) Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge, UK, pp 98–117
Yvon-Durocher G, Reiss J, Blanchard J, Ebenman B, Perkins DM, Reuman DC, Woodward G, Petchey OL (2011) Across ecosystem comparisons of size structure: methods, approaches and prospects. Oikos 120:550–563
Zotz G, Traunspurger W (2016) What´s in the tank? Nematodes and other major components of the meiofauna of bromeliad phytotelms in lowland Panama. BMC Ecol 16:1–9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Peralta-Maraver, I., Traunspurger, W., Robertson, A.L., Giere, O., Majdi, N. (2023). Freshwater Meiofauna—A Biota with Different Rules?. In: Giere, O., Schratzberger, M. (eds) New Horizons in Meiobenthos Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21622-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-21622-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21621-3
Online ISBN: 978-3-031-21622-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)