Abstract
The introduction of new technologies and materials in recent decades has significantly reduced construction times around the world. These changes have brought about a standardization of construction systems, which don’t account for different cultural, social or even climatic contexts. Ecuador, and all its regions, have conformed to these changes, leaving behind their vernacular architecture which had been made of mud or guadua cane, and replacing them with industrialized systems which use materials such as concrete or metal. However, it is not clear whether these changes have been advantageous or disadvantageous for the interior thermal performance of the buildings. In this context, this chapter presents a thermal analysis of the different construction systems used in housing projects built in the last 4 decades, viz. 1980–1990, 1990–2000, 2000–2010 and 2010–2020, taking as a case study the Andean region of Ecuador. For this purpose, 10 dwellings from each period have been analyzed, and the average characteristics of their materials (Envelope weight) and the building morphologies (window/wall ratio) have been established. The impact of these variables on the interior temperature has been measured through energy simulations with the Design Builder program and its calculation engine Energy Plus, which has been configured to a base model for the four periods, in order not to bias the results. The study establishes that residential buildings in this region have, on the one hand, seen considerable reduction in the weight of their envelope, and on the other hand, seen considerable growth in the proportion of the glazed surface. These changes have had repercussions the thermal oscillation in the most recently built buildings tends to be greater than in the older ones, as the morphological and material changes results in a reduction in thermal mass and an increase in thermal transmittance.
Keywords
- Thermal mass
- Materials
- Thermal transmittance
- Thermal oscillation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Pesántez M (2011) Arquitectura tradicional en Azuay y Cañar. INPC, Quito, Ecuador
Serra R (2002) Arquitectura Y Climas. Edicions UPC, Barcelona-España
Sen R, Pratim Bhattacharya S, Chattopadhyay S (2021) Are low-income mass housing envelops energy efficient and comfortable? A multi-objective evaluation in warm-humid climate. Energy Build 111055
Golany GS (1996) Urban design morphology and thermal performance. Atmos Environ 30:455–465
Ortega A (2006) Sostenibilidad y evolución. Universidad Politécnica de Madrid, Arquitectura contemporánea basada en estrategias bioclimáticas de la arquitectura popular
Sandoval F, Solano J, Cedeño L (2017) La arquitectura vernácula en el medio rural y urbano de Manabí. Levantamientos, análisis y enseñanzas. Análisis tipológico constructivo como respuesta al clima de la región de Manabí (Ecuador). In: Hábitat social, digno, sostenible y seguro en Manta, Manabí, Ecuador, pp 135–143. Universidad de Valladolid. Universidad Laica Eloy Alfaro de Manabí
Camino A (1999) Evolución y características tipológicas de la vivienda en Manabí Ecuador. Universidad Politécnica de Cataluña, Barcelona-España
Torres-Quezada J, Coch H, Isalgué A (2017) The roof thermal behavior in a tropical-equatorial climate. In: 1st International Congress Architecture Dr
Ortiz E, Torres-Quezada J, Véliz J (2021) Evaluación térmica y lumínica en prototipos de cubiertas ligeras, thermal and lighting evaluation in light roof prototypes. Habitat Sustentable 11:60–71
Salas M (2017) Rediseño de la Comunidad Panacocha. Universidad Internacional del Ecuador, Quito-Ecuador
INAMHI (2017) Boletín Climatologico Decadal
Guevara M (2015) Evaluación térmica de un elemento arquitectónico ancestral: Los putucos, Puno, Perú. Semin Iberoam Arquit y construcción con tierra 15:1–10
Caraballo C (2000) Centros históricos y turismo en América Latina. Una polémica de fin de siglo. in Desarrollo cultural y gestión en centros históricos. Flacso, Quito, Ecuador
Mejía VE (2010) proceso de urbanización en Cuenca. Universidad Politécnica de Catalunya, Ecuador. Burns
Rivas P (2017) Confort Térmico En Viviendas Vernáculas, Técnica De Construcción De Bahareque En Azogues-Ecuador. University of Cuenca, Ecuador
Baquero M, Quesada F (2016) Eficiencia energética en el sector residencial de la Ciudad de Cuenca, Ecuador. Maskana 7:147–165
Mino-Rodriguez I (2021) A thermal comfort model for high-altitude regions in the Ecuadorian Andes
Godoy Muñoz A (2012) El confort térmico adaptativo. Universidad Politécnica de Cataluña, España
Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14:2626–2640
Peeters L, De Dear R, Hensen J, D’haeseleer W (2009) Thermal comfort in residential buildings: comfort values and scales for building energy simulation. Appl Energy 86:772780
Nematchoua MK, Tchinda R, Ricciardi P, Djongyang N (2014) A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon. Renew Sustain Energy Rev 39:381–393
Olgyay V (1998) Arquitectura y Clima, manuanl de diseño bioclimático para arquitectos y urbanistas. Gustavo Gili, Barcelona, España
Pérez JL, de Guevara IL, Boned J (2015) Impact on the local climate in the process of territorial planning. Bioclimatic analysis of the Costa del Sol in Malaga (Spain). Eure 41:187–210
Givoni B (1992) Comfort, climate analysis and building design guidelines. Energy Build 18:11–23
López M (2003) Estrategias bioclimáticas en la arquitectura. Universidad Politécnica de Catalunya
CTE (2006) Código Técnico de la Edificación 4
Vivienda M (2011) de DU y Eficiencia energética en la construcción en Ecuador. Norma Ecuatoriana de la Construcción
Santana BO, Torres-Quezada J, Coch H, Isalgue A (2022) Monitoring and calculation study in mediterranean residential spaces: thermal performance comparison for the winter season. Buildings 12
Contreras CH (2017) Superar la sostenibilidad urbana. Bitacora 27:27–34
Abanto GA et al (2017) Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material. Case Stud Constr Mater 6:177–191
Adorni E, Coïsson E, Ferretti D (2013) In situ characterization of archaeological adobe bricks. Constr Build Mater 40:1–9
Avrami E, Guillaud H, Hardy M (2008) Terra literature review: an overview of research in earthen architecture conservation. The Getty Conservation Institute, Los Ángeles, United States
Holguino A, Olivera L, Escobar K (2018) Confort térmico en una habitación de adobe con sistema de almacenamiento de calor en los andes del Perú. J High Andean Res 20:289–300
Felix M, Elsamahy E (2017) The efficiency of using different outer wall construction materials to achieve thermal comfort in various climatic zones. Energy Procedia 115:321–331
Minke G (2008) Building with earth design and technology of a sustainable architecture. Birkhäuser Publishers for Architecture
Sharma V, Vinayak HK, Marwaha BM (2015) Enhancing sustainability of rural adobe houses of hills by addition of vernacular fiber reinforcement. Int J Sustain Built Environ 4:348–358
Zhang J, Xu W, Li A, Zheng K, Zhang J (2016) Study on improving thermal environment and energy conservation of quadrangle adobe dwelling. Energy Build 129:92–101
Shukla A, Tiwari GN, Sodha MS (2009) Embodied energy analysis of adobe house. Renew Energy 34:755–761
Michael A, Philokyprou M, Thravalou S (2016) The role of adobes in the thermal performance of vernacular dwellings. Terra Lyon
Molina JR, Lefebvre G, Espinoza R, Horn M, Gómez MM (2021) Bioclimatic approach for rural dwellings in the cold, high Andean region: A case study of a Peruvian house. Energy Build 231:110605
Roux R (2018) Bahareque y su inercia térmica para muros de viviendas de interés social. Rev Legado Arquit y Diseño:25–39
Guerrero L (2007) Hacia la recuperación de una cultura constructiva. Apuntes 20:182–201
Jaramillo A, Patricio Z, Ilha L (2019) Durabilidad de los materiales naturales de construcción: percepciones de proyectistas, constructores y usuarios en Florianópolis Brasil. Revista de Arquitectura 21:89–100
El Filho RR (2007) uso de la tierra como elemento constructivo en Brasil: un corto paranoma del proceso historico, manejo, usos, desafíos y paradigmas. Apuntes 20:232–241
Manzini M (2011) Las viviendas del siglo XIX en Santiago de Chile y la región de Cuyo en Argentina. Universum 26:165–186
Giordano P, Quevedo F (2006) Apertura e inserción internacional en la estratégia de desarrollo de Uruguay. BID-INTAL, Buenos Aires, Argentina
Ríos J, Olaya Y, Rivera G (2017) Proyección de la demanda de materiales de construcción en Colombia por medio de análisis de flujos de materiales y dinámica de sistemas. Rev Ing Univ Medellín 16:75–95
Aguirre Ullauri MC, Castillo Carchipulla EM, López León DM (2020) Diagnóstico de materiales y lesiones en las fachadas del centro histórico de Cuenca (Ecuador). Ge-conservacion 17:47–63
Torres Avilés A (2020) El impacto de los materiales en la arquitectura sostenible. La energía incorporada en las viviendas de Cuenca. Universidad Católica de Cuenca, Cuenca-Ecuador
Torres-Quezada J, Coch H, Isalgué A (2019) Assessment of the reflectivity and emissivity impact on light metal roofs thermal behaviour, in warm and humid climate. Energy Build 188–189:200–208
Torres-Quezada J, Coch H, Isalgué A, López J (2018) The roof impact on the heat balance of low height buildings at low latitudes. In: PLEA: Smart and Healthy within the 2-degree limit
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Torres-Quezada, J.E., Torres-Avilés, A. (2023). The Constructive Evolution of the Envelope. The Impact on Indoor Thermal Conditions in Andean Regions. In: Torres-Quezada, J.E. (eds) Energetic Characterization of Building Evolution. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-21598-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-21598-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21597-1
Online ISBN: 978-3-031-21598-8
eBook Packages: EnergyEnergy (R0)