Skip to main content

The Constructive Evolution of the Envelope. The Impact on Indoor Thermal Conditions in Andean Regions

  • Chapter
  • First Online:
Energetic Characterization of Building Evolution

Abstract

The introduction of new technologies and materials in recent decades has significantly reduced construction times around the world. These changes have brought about a standardization of construction systems, which don’t account for different cultural, social or even climatic contexts. Ecuador, and all its regions, have conformed to these changes, leaving behind their vernacular architecture which had been made of mud or guadua cane, and replacing them with industrialized systems which use materials such as concrete or metal. However, it is not clear whether these changes have been advantageous or disadvantageous for the interior thermal performance of the buildings. In this context, this chapter presents a thermal analysis of the different construction systems used in housing projects built in the last 4 decades, viz. 1980–1990, 1990–2000, 2000–2010 and 2010–2020, taking as a case study the Andean region of Ecuador. For this purpose, 10 dwellings from each period have been analyzed, and the average characteristics of their materials (Envelope weight) and the building morphologies (window/wall ratio) have been established. The impact of these variables on the interior temperature has been measured through energy simulations with the Design Builder program and its calculation engine Energy Plus, which has been configured to a base model for the four periods, in order not to bias the results. The study establishes that residential buildings in this region have, on the one hand, seen considerable reduction in the weight of their envelope, and on the other hand, seen considerable growth in the proportion of the glazed surface. These changes have had repercussions the thermal oscillation in the most recently built buildings tends to be greater than in the older ones, as the morphological and material changes results in a reduction in thermal mass and an increase in thermal transmittance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pesántez M (2011) Arquitectura tradicional en Azuay y Cañar. INPC, Quito, Ecuador

    Google Scholar 

  2. Serra R (2002) Arquitectura Y Climas. Edicions UPC, Barcelona-España

    Google Scholar 

  3. Sen R, Pratim Bhattacharya S, Chattopadhyay S (2021) Are low-income mass housing envelops energy efficient and comfortable? A multi-objective evaluation in warm-humid climate. Energy Build 111055

    Google Scholar 

  4. Golany GS (1996) Urban design morphology and thermal performance. Atmos Environ 30:455–465

    Article  Google Scholar 

  5. Ortega A (2006) Sostenibilidad y evolución. Universidad Politécnica de Madrid, Arquitectura contemporánea basada en estrategias bioclimáticas de la arquitectura popular

    Google Scholar 

  6. Sandoval F, Solano J, Cedeño L (2017) La arquitectura vernácula en el medio rural y urbano de Manabí. Levantamientos, análisis y enseñanzas. Análisis tipológico constructivo como respuesta al clima de la región de Manabí (Ecuador). In: Hábitat social, digno, sostenible y seguro en Manta, Manabí, Ecuador, pp 135–143. Universidad de Valladolid. Universidad Laica Eloy Alfaro de Manabí

    Google Scholar 

  7. Camino A (1999) Evolución y características tipológicas de la vivienda en Manabí Ecuador. Universidad Politécnica de Cataluña, Barcelona-España

    Google Scholar 

  8. Torres-Quezada J, Coch H, Isalgué A (2017) The roof thermal behavior in a tropical-equatorial climate. In: 1st International Congress Architecture Dr

    Google Scholar 

  9. Ortiz E, Torres-Quezada J, Véliz J (2021) Evaluación térmica y lumínica en prototipos de cubiertas ligeras, thermal and lighting evaluation in light roof prototypes. Habitat Sustentable 11:60–71

    Article  Google Scholar 

  10. Salas M (2017) Rediseño de la Comunidad Panacocha. Universidad Internacional del Ecuador, Quito-Ecuador

    Google Scholar 

  11. INAMHI (2017) Boletín Climatologico Decadal

    Google Scholar 

  12. Guevara M (2015) Evaluación térmica de un elemento arquitectónico ancestral: Los putucos, Puno, Perú. Semin Iberoam Arquit y construcción con tierra 15:1–10

    Google Scholar 

  13. Caraballo C (2000) Centros históricos y turismo en América Latina. Una polémica de fin de siglo. in Desarrollo cultural y gestión en centros históricos. Flacso, Quito, Ecuador

    Google Scholar 

  14. Mejía VE (2010) proceso de urbanización en Cuenca. Universidad Politécnica de Catalunya, Ecuador. Burns

    Google Scholar 

  15. Rivas P (2017) Confort Térmico En Viviendas Vernáculas, Técnica De Construcción De Bahareque En Azogues-Ecuador. University of Cuenca, Ecuador

    Google Scholar 

  16. Baquero M, Quesada F (2016) Eficiencia energética en el sector residencial de la Ciudad de Cuenca, Ecuador. Maskana 7:147–165

    Google Scholar 

  17. Mino-Rodriguez I (2021) A thermal comfort model for high-altitude regions in the Ecuadorian Andes

    Google Scholar 

  18. Godoy Muñoz A (2012) El confort térmico adaptativo. Universidad Politécnica de Cataluña, España

    Google Scholar 

  19. Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14:2626–2640

    Article  Google Scholar 

  20. Peeters L, De Dear R, Hensen J, D’haeseleer W (2009) Thermal comfort in residential buildings: comfort values and scales for building energy simulation. Appl Energy 86:772780

    Google Scholar 

  21. Nematchoua MK, Tchinda R, Ricciardi P, Djongyang N (2014) A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon. Renew Sustain Energy Rev 39:381–393

    Article  Google Scholar 

  22. Olgyay V (1998) Arquitectura y Clima, manuanl de diseño bioclimático para arquitectos y urbanistas. Gustavo Gili, Barcelona, España

    Google Scholar 

  23. Pérez JL, de Guevara IL, Boned J (2015) Impact on the local climate in the process of territorial planning. Bioclimatic analysis of the Costa del Sol in Malaga (Spain). Eure 41:187–210

    Google Scholar 

  24. Givoni B (1992) Comfort, climate analysis and building design guidelines. Energy Build 18:11–23

    Article  Google Scholar 

  25. López M (2003) Estrategias bioclimáticas en la arquitectura. Universidad Politécnica de Catalunya

    Google Scholar 

  26. CTE (2006) Código Técnico de la Edificación 4

    Google Scholar 

  27. Vivienda M (2011) de DU y Eficiencia energética en la construcción en Ecuador. Norma Ecuatoriana de la Construcción

    Google Scholar 

  28. Santana BO, Torres-Quezada J, Coch H, Isalgue A (2022) Monitoring and calculation study in mediterranean residential spaces: thermal performance comparison for the winter season. Buildings 12

    Google Scholar 

  29. Contreras CH (2017) Superar la sostenibilidad urbana. Bitacora 27:27–34

    Article  Google Scholar 

  30. Abanto GA et al (2017) Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material. Case Stud Constr Mater 6:177–191

    Google Scholar 

  31. Adorni E, Coïsson E, Ferretti D (2013) In situ characterization of archaeological adobe bricks. Constr Build Mater 40:1–9

    Article  Google Scholar 

  32. Avrami E, Guillaud H, Hardy M (2008) Terra literature review: an overview of research in earthen architecture conservation. The Getty Conservation Institute, Los Ángeles, United States

    Google Scholar 

  33. Holguino A, Olivera L, Escobar K (2018) Confort térmico en una habitación de adobe con sistema de almacenamiento de calor en los andes del Perú. J High Andean Res 20:289–300

    Google Scholar 

  34. Felix M, Elsamahy E (2017) The efficiency of using different outer wall construction materials to achieve thermal comfort in various climatic zones. Energy Procedia 115:321–331

    Article  Google Scholar 

  35. Minke G (2008) Building with earth design and technology of a sustainable architecture. Birkhäuser Publishers for Architecture

    Google Scholar 

  36. Sharma V, Vinayak HK, Marwaha BM (2015) Enhancing sustainability of rural adobe houses of hills by addition of vernacular fiber reinforcement. Int J Sustain Built Environ 4:348–358

    Article  Google Scholar 

  37. Zhang J, Xu W, Li A, Zheng K, Zhang J (2016) Study on improving thermal environment and energy conservation of quadrangle adobe dwelling. Energy Build 129:92–101

    Article  Google Scholar 

  38. Shukla A, Tiwari GN, Sodha MS (2009) Embodied energy analysis of adobe house. Renew Energy 34:755–761

    Article  Google Scholar 

  39. Michael A, Philokyprou M, Thravalou S (2016) The role of adobes in the thermal performance of vernacular dwellings. Terra Lyon

    Google Scholar 

  40. Molina JR, Lefebvre G, Espinoza R, Horn M, Gómez MM (2021) Bioclimatic approach for rural dwellings in the cold, high Andean region: A case study of a Peruvian house. Energy Build 231:110605

    Article  Google Scholar 

  41. Roux R (2018) Bahareque y su inercia térmica para muros de viviendas de interés social. Rev Legado Arquit y Diseño:25–39

    Google Scholar 

  42. Guerrero L (2007) Hacia la recuperación de una cultura constructiva. Apuntes 20:182–201

    Google Scholar 

  43. Jaramillo A, Patricio Z, Ilha L (2019) Durabilidad de los materiales naturales de construcción: percepciones de proyectistas, constructores y usuarios en Florianópolis Brasil. Revista de Arquitectura 21:89–100

    Google Scholar 

  44. El Filho RR (2007) uso de la tierra como elemento constructivo en Brasil: un corto paranoma del proceso historico, manejo, usos, desafíos y paradigmas. Apuntes 20:232–241

    Google Scholar 

  45. Manzini M (2011) Las viviendas del siglo XIX en Santiago de Chile y la región de Cuyo en Argentina. Universum 26:165–186

    Article  Google Scholar 

  46. Giordano P, Quevedo F (2006) Apertura e inserción internacional en la estratégia de desarrollo de Uruguay. BID-INTAL, Buenos Aires, Argentina

    Google Scholar 

  47. Ríos J, Olaya Y, Rivera G (2017) Proyección de la demanda de materiales de construcción en Colombia por medio de análisis de flujos de materiales y dinámica de sistemas. Rev Ing Univ Medellín 16:75–95

    Article  Google Scholar 

  48. Aguirre Ullauri MC, Castillo Carchipulla EM, López León DM (2020) Diagnóstico de materiales y lesiones en las fachadas del centro histórico de Cuenca (Ecuador). Ge-conservacion 17:47–63

    Google Scholar 

  49. Torres Avilés A (2020) El impacto de los materiales en la arquitectura sostenible. La energía incorporada en las viviendas de Cuenca. Universidad Católica de Cuenca, Cuenca-Ecuador

    Google Scholar 

  50. Torres-Quezada J, Coch H, Isalgué A (2019) Assessment of the reflectivity and emissivity impact on light metal roofs thermal behaviour, in warm and humid climate. Energy Build 188–189:200–208

    Article  Google Scholar 

  51. Torres-Quezada J, Coch H, Isalgué A, López J (2018) The roof impact on the heat balance of low height buildings at low latitudes. In: PLEA: Smart and Healthy within the 2-degree limit

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Eloy Torres-Quezada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres-Quezada, J.E., Torres-Avilés, A. (2023). The Constructive Evolution of the Envelope. The Impact on Indoor Thermal Conditions in Andean Regions. In: Torres-Quezada, J.E. (eds) Energetic Characterization of Building Evolution. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-21598-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21598-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21597-1

  • Online ISBN: 978-3-031-21598-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics