Skip to main content

Macro to Micro: Surface Modification of Titanium Dental Implants

  • Chapter
  • First Online:
Surface Modification of Titanium Dental Implants

Abstract

Over past decades, several titanium surface modification approaches have been applied to manufacture implant surfaces in order to increase osseointegration, shorter healing time, greater bone-to-implant contact ratio and lifetime of titanium implants. In this chapter, we review implant surface roughness and history of surface modification. Most typical designs and modification strategies (e.g., Sandblasted, large-grit, and acid-etching (SLA), plasma-spraying and anodization) in macro/micro scale are introduced in terms of technique, advantages, drawbacks, clinical applications and biological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BIC:

Bone-implant contact

CaP:

Calcium phosphate

HAp:

Hydroxyapatite

Sa:

Estimated average roughness

SLA:

Sandblasted, large-grit, and acid-etched surface

STI:

Soft tissue integration

Ti:

Titanium

TPS:

Ti plasma sprayed surface

References

  • Abrishamchian, A., Hooshmand, T., Mohammadi, M., et al. (2013). Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study. Materials Science & Engineering C, 33, 2002–2010.

    Article  Google Scholar 

  • Abron, A., Hopfensperger, M., Thompson, J., et al. (2001). Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model. The Journal of Prosthetic Dentistry, 85, 40–46.

    Article  Google Scholar 

  • Abuhussein, H., Pagni, G., Rebaudi, A., et al. (2010). The effect of thread pattern upon implant osseointegration. Clinical Oral Implants Research, 21, 129–136.

    Article  Google Scholar 

  • Agroya, P. I., Agroya, A., Nagargoje, G. D., et al. (2020). Current trends and recent advances in surface texture of endosseous dental implants: An overview. SASPR Edu International Pvt. Ltd.

    Google Scholar 

  • Albrektsson, T., & Wennerberg, A. (2004a). Oral implant surfaces: Part 1 – Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. International Journal of Prosthodontics, 17, 536–543.

    Google Scholar 

  • Albrektsson, T., & Wennerberg, A. (2004b). Oral implant surfaces: Part 2 – Review focusing on clinical knowledge of different surfaces. The International Journal of Prosthodontics, 17, 544–564.

    Google Scholar 

  • Albrektsson, T., & Wennerberg, A. (2019). On osseointegration in relation to implant surfaces. Clinical Implant Dentistry and Related Research, 21(Suppl 1), 4–7.

    Article  Google Scholar 

  • Albrektsson, T., Canullo, L., Cochran, D., et al. (2016). “Peri-implantitis”: A complication of a foreign body or a man-made “disease”. Facts and fiction. Clinical Implant Dentistry and Related Research, 18, 840–849.

    Article  Google Scholar 

  • Almas, K., Smith, S., & Kutkut, A. (2019). What is the best micro and macro dental implant topography? Dental Clinics of North America, 63, 447–460.

    Article  Google Scholar 

  • Anil, S., Anand, P. S., Alghamdi, H., et al. (2011). Dental implant surface enhancement and osseointegration. In Implant dentistry – A rapidly evolving practice. InTech.

    Google Scholar 

  • Arcos, D., & Vallet-Regi, M. (2020). Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 8, 1781–1800.

    Article  Google Scholar 

  • Bagherzadeh, R., Latifi, M., Najar, S. S., et al. (2013). Three-dimensional pore structure analysis of nano/microfibrous scaffolds using confocal laser scanning microscopy. Journal of Biomedical Materials Research Part A, 101A, 765–774.

    Article  Google Scholar 

  • Barfeie, A., Wilson, J., & Rees, J. (2015). Implant surface characteristics and their effect on osseointegration. British Dental Journal, 218, E9.

    Article  Google Scholar 

  • Bateli, M., Att, W., & Strub, J. R. (2011). Implant neck configurations for preservation of marginal bone level: A systematic review. The International Journal of Oral & Maxillofacial Implants, 26, 290–303.

    Google Scholar 

  • Bell, W. H. (1992). Modern practice in orthognathic and reconstructive surgery. WB Saunders.

    Google Scholar 

  • Blázquez-Hinarejos, M., Ayuso-Montero, R., Álvarez-López, J. M., et al. (2017). Histological differences in the adherence of connective tissue to laser-treated abutments and standard abutments for dental implants. An experimental pilot study in humans. Medicina Oral, Patología Oral y Cirugía Bucal, 22, e774–e779.

    Google Scholar 

  • Bornstein, M. M., Hart, C. N., Halbritter, S. A., et al. (2009). Early loading of nonsubmerged titanium implants with a chemically modified sand-blasted and acid-etched surface: 6-month results of a prospective case series study in the posterior mandible focusing on peri-implant crestal bone changes and implant stability quotient (ISQ) values. Clinical Implant Dentistry and Related Research, 11, 338–347.

    Article  Google Scholar 

  • Bosshardt, D. D., Chappuis, V., & Buser, D. (2016). Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology, 73, 22.

    Article  Google Scholar 

  • Brett, P. M., Harle, J., Salih, V., et al. (2004). Roughness response genes in osteoblasts. Bone, 35, 124–133.

    Article  Google Scholar 

  • Brnemark, P. I. (1983). Osseointegration and its experimental background. Journal of Prosthetic Dentistry, 50, 399–410.

    Article  Google Scholar 

  • Buser, D., Schenk, R. K., Steinemann, S., et al. (1991). Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research, 25, 889–902.

    Article  Google Scholar 

  • Buser, D., Janner, S. F., Wittneben, J. G., et al. (2012). 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: A retrospective study in 303 partially edentulous patients. Clinical Implant Dentistry and Related Research, 14, 839–851.

    Article  Google Scholar 

  • Buser, D., Sennerby, L., & De Bruyn, H. (2017). Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000, 73, 7–21.

    Article  Google Scholar 

  • Cao, J., Wang, T., Pu, Y., et al. (2018). Influence on proliferation and adhesion of human gingival fibroblasts from different titanium surface decontamination treatments: An in vitro study. Archives of Oral Biology, 87, 204–210.

    Article  Google Scholar 

  • Chen, Z., Zhang, Y., Li, J., et al. (2017). Influence of laser-microtextured surface collar on marginal bone loss and peri-implant soft tissue response: A systematic review and meta-analysis. Journal of Periodontology, 88, 651–662.

    Article  Google Scholar 

  • Cochran, D. L., Buser, D., Bruggenkate, C., et al. (2010). The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITI SLA implants. Clinical Oral Implants Research, 13, 144–153.

    Article  Google Scholar 

  • Coelho, P. G., & Lemons, J. E. (2010). Physico/chemical characterization and in vivo evaluation of nanothickness bioceramic depositions on alumina-blasted/acid-etched Ti-6Al-4V implant surfaces. Journal of Biomedical Materials Research Part A, 90A, 351–361.

    Article  Google Scholar 

  • Dagorne, C., Malet, J., Bizouard, G., et al. (2015). Clinical evaluation of two dental implant macrostructures on peri-implant bone loss: A comparative, retrospective study. Clinical Oral Implants Research, 26, 307–313.

    Article  Google Scholar 

  • Dike, L. E., Chen, C. S., Mrksich, M., et al. (1999). Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cellular & Developmental Biology. Animal, 35, 441–448.

    Article  Google Scholar 

  • Dominguez, R., & Holmes, K. C. (2011). Actin structure and function. Annual Review of Biophysics, 40, 169.

    Article  Google Scholar 

  • Eriksson, C., Lausmaa, J., & Nygren, H. (2001). Interactions between human whole blood and modified TiO2-surfaces: Influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials, 22, 1987–1996.

    Article  Google Scholar 

  • Ernst, S., Stübinger, S., et al. (2014). Comparison of two dental implant surface modifications on implants with same macrodesign: An experimental study in the pelvic sheep model. Clinical Oral Implants Research, 26, 898–908.

    Article  Google Scholar 

  • Feller, L., Chandran, R., Khammissa, R., et al. (2014). Osseointegration: Biological events in relation to characteristics of the implant surface. SADJ: Journal of the South African Dental Association = tydskrif van die Suid-Afrikaanse Tandheelkundige Vereniging, 69, 112, 114–117.

    Google Scholar 

  • Gottlow, J., Barkarmo, S., & Sennerby, L. (2012). An experimental comparison of two different clinically used implant designs and surfaces. Clinical Implant Dentistry & Related Research, 14, e204–e212.

    Article  Google Scholar 

  • Granato, R., Marin, C., Suzuki, M., et al. (2010). Biomechanical and histomorphometric evaluation of a thin ion beam bioceramic deposition on plateau root form implants: An experimental study in dogs. Journal of Biomedical Materials Research Part B Applied Biomaterials, 90B, 396–403.

    Article  Google Scholar 

  • Gulati, K., Santos, A., Findlay, D., et al. (2015). Optimizing anodization conditions for the growth of titania nanotubes on curved surfaces. The Journal of Physical Chemistry C, 119, 16033–16045.

    Article  Google Scholar 

  • Gulati, K., Moon, H.-J., et al. (2018). Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity. Materials Science & Engineering, C. Materials for Biological Applications, 91, 624.

    Article  Google Scholar 

  • Gulati, K., Zhang, Y., Di, P., et al. (2021). Research to clinics: Clinical translation considerations for anodized nano-engineered titanium implants. ACS Biomaterials Science & Engineering, 8(10), 4077–4091.

    Article  Google Scholar 

  • Guo, T., Gulati, K., Arora, H., et al. (2021). Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomaterialia, 124, 33–49.

    Article  Google Scholar 

  • Gupta, S., Dahiya, V., & Shukla, P. (2014). Surface topography of dental implants: A review. Journal of Dental Implants, 4, 66.

    Article  Google Scholar 

  • Hamlekhan, A., Takoudis, C., Sukotjo, C., et al. (n.d.). Recent progress toward surface modification of bone/dental implants with titanium and zirconia dioxide nanotubes.

    Google Scholar 

  • Hanawa, T. (2020). Zirconia versus titanium in dentistry: A review. Dental Materials Journal, 39, 24–36.

    Article  Google Scholar 

  • He, Y., Zhang, Y., Shen, X., et al. (2018). The fabrication and in vitro properties of antibacterial polydopamine-LL-37-POPC coatings on micro-arc oxidized titanium. Colloids and Surfaces. B, Biointerfaces, 170, 54–63.

    Article  Google Scholar 

  • Hyo-Sook, R., Cheol, N., Jong-Ho, L., et al. (2014). The influence of thread geometry on implant osseointegration under immediate loading: A literature review. Journal of Advanced Prosthodontics, 6, 547–554.

    Article  Google Scholar 

  • Ivanovski, S., & Lee, R. (2018). Comparison of peri-implant and periodontal marginal soft tissues in health and disease. Periodontology 2000, 76, 116–130.

    Article  Google Scholar 

  • Jarmar, T., Palmquist, A., Brånemark, R., et al. (2008). Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high-resolution transmission electron microscopy. Clinical Implant Dentistry and Related Research, 10, 11–22.

    Article  Google Scholar 

  • Jungner, M., Lundqvist, P., & Lundgren, S. (2005). Oxidized titanium implants (Nobel Biocare TiUnite) compared with turned titanium implants (Nobel Biocare mark III) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. Clinical Oral Implants Research, 16, 308–312.

    Article  Google Scholar 

  • Junker, R., Dimakis, A., Thoneick, M., et al. (2010). Effects of implant surface coatings and composition on bone integration: A systematic review. Clinical Oral Implants Research, 20, 185–206.

    Article  Google Scholar 

  • Karl, M., & Albrektsson, T. (2017). Clinical performance of dental implants with a moderately rough (TiUnite) surface: A meta-analysis of prospective clinical studies. The International Journal of Oral & Maxillofacial Implants, 32, 717–734.

    Article  Google Scholar 

  • Khandelwal, N., Oates, T. W., Vargas, A., et al. (2013). Conventional SLA and chemically modified SLA implants in patients with poorly controlled type 2 diabetes mellitus – A randomized controlled trial. Clinical oral implants research, 24, 13–19.

    Article  Google Scholar 

  • Klokkevold, P. R., Johnson, P., Dadgostari, S., et al. (2001). Early endosseous integration enhanced by dual acid etching of titanium: A torque removal study in the rabbit. Clinical Oral Implants Research, 12, 350–357.

    Article  Google Scholar 

  • Kohn, D. H. (1992). Overview of factors important in implant design. Journal of Oral Implantology, 18, 204–219.

    Google Scholar 

  • Kong, L., Hu, K., Li, D., et al. (2008). Evaluation of the cylinder implant thread height and width: A 3-dimensional finite element analysis. International Journal of Oral & Maxillofacial Implants, 23, 65.

    Google Scholar 

  • Lang, N. P., Salvi, G. E., Huynh-Ba, G., et al. (2011). Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clinical Oral Implants Research, 22, 349–356.

    Article  Google Scholar 

  • Leong, A., De Kok, I., Mendonça, D., et al. (2018). Molecular assessment of human peri-implant mucosal healing at laser-modified and machined titanium abutments. The International Journal of Oral & Maxillofacial Implants, 33, 895–904.

    Article  Google Scholar 

  • Linkow, L. I., & Wagner, J. R. (1993). Management of implant-related problems and infections. The Journal of Oral Implantology, 19, 321–335.

    Google Scholar 

  • Liviu, F., Yusuf, J., Khammissa, R., et al. (2015). Cellular responses evoked by different surface characteristics of intraosseous titanium implants. Journal of Biomedicine and Biotechnology, 2015, 171945.

    Google Scholar 

  • Lo, W. J., Grant, D. M., Ball, M. D., et al. (2000). Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy. Journal of Biomedical Materials Research, 50, 536–545.

    Article  Google Scholar 

  • Mei, S., Wang, H., Wang, W., et al. (2014). Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials, 35, 4255–4265.

    Article  Google Scholar 

  • Mendonça, G., Mendonça, D., Aragão, F., et al. (2008). Advancing dental implant surface technology – From micron- to nanotopography. Biomaterials, 29, 3822–3835.

    Article  Google Scholar 

  • Messias, A., Nicolau, P., & Guerra, F. (2019). Titanium dental implants with different collar design and surface modifications: A systematic review on survival rates and marginal bone levels. Clinical Oral Implants Research, 30, 20–48.

    Article  Google Scholar 

  • Mohammadi, S., Esposito, M., Hall, J., et al. (2004). Long-term bone response to titanium implants coated with thin radiofrequent magnetron-sputtered hydroxyapatite in rabbits. The International Journal of Oral & Maxillofacial Implants, 19, 498–509.

    Google Scholar 

  • Moraschini, V., Poubel, L., Ferreira, V. F., et al. (2015). Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. International Journal of Oral & Maxillofacial, 44, 377.

    Article  Google Scholar 

  • Nagasawa, M., Cooper, L. F., Ogino, Y., et al. (2016). Topography influences adherent cell regulation of Osteoclastogenesis. Journal of Dental Research, 95, 319–326.

    Article  Google Scholar 

  • Nascimento, C. D., Pita, M. S., Fernandes, F., et al. (2014). Bacterial adhesion on the titanium and zirconia abutment surfaces. Clinical Oral Implants Research, 25, 337–343.

    Article  Google Scholar 

  • Nelson, K., Stricker, A., Raguse, J. D., et al. (2016). Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: A clinical clarification. Journal of Oral Rehabilitation, 43, 871–872.

    Article  Google Scholar 

  • Nevins, M., Kim, D. M., Jun, S. H., et al. (2010). Histologic evidence of a connective tissue attachment to laser microgrooved abutments: A canine study. The International Journal of Periodontics & Restorative Dentistry, 30, 245–255.

    Google Scholar 

  • Nothdurft, F. P., Fontana, D., Ruppenthal, S., et al. (2015). Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: A comparison of materials and surface topographies. Clinical Implant Dentistry and Related Research, 17, 1237–1249.

    Article  Google Scholar 

  • Ogawa, T., & Nishimura, I. (2006). Genes differentially expressed in titanium implant healing. Journal of Dental Research, 85, 566–570.

    Article  Google Scholar 

  • Olivares-Navarrete, R., Hyzy, S. L., Gittens, R. A., et al. (2013). Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine Journal, 13, 1563–1570.

    Article  Google Scholar 

  • Oliveira, D., Ottria, L., Gargari, M., et al. (2017). Surface modification of titanium alloys for biomedical application: From macro to nano scale. Journal of Biological Regulators and Homeostatic Agents, 31, 221–232.

    Google Scholar 

  • Ong, J. L., Bessho, K., & Carnes, D. L. (2002). Bone response to plasma-sprayed hydroxyapatite and radiofrequency-sputtered calcium phosphate implants in vivo. The International Journal of Oral & Maxillofacial Implants, 17, 581–586.

    Google Scholar 

  • Ong, J. L., Carnes, D. L., & Bessho, K. (2004). Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials, 25, 4601–4606.

    Article  Google Scholar 

  • Park, J. Y., Gemmell, C. H., & Davies, J. E. (2001). Platelet interactions with titanium: Modulation of platelet activity by surface topography. Biomaterials, 22, 2671–2682.

    Article  Google Scholar 

  • Prachar, P., Bartakova, S., Brezina, V., et al. (2015). Cytocompatibility of implants coated with titanium nitride and zirconium nitride. Bratislavské Lekárske Listy, 116, 154–156.

    Google Scholar 

  • Raines, A. L., Olivares-Navarrete, R., Wieland, M., et al. (2010). Regulation of angiogenesis during Osseointegration by titanium surface microstructure and energy. Biomaterials, 31, 4909–4917.

    Article  Google Scholar 

  • Ralf, S., Bernd, S., Frank, S., et al. (2016). Impact of dental implant surface modifications on osseointegration. BioMed Research International, 2016, 6285620.

    Google Scholar 

  • Refai, A. K., Textor, M., Brunette, D. M., et al. (2004). Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. Journal of Biomedical Materials Research. Part A, 70, 194–205.

    Article  Google Scholar 

  • Ricci, J. L., Grew, J. C., & Alexander, H. (2008). Connective-tissue responses to defined biomaterial surfaces. I. Growth of rat fibroblast and bone marrow cell colonies on microgrooved substrates. Journal of Biomedical Materials Research Part A, 85, 313–325.

    Article  Google Scholar 

  • Rocci, A., Rocci, M., Rocci, C., et al. (2013). Immediate loading of Brånemark system TiUnite and machined-surface implants in the posterior mandible, part II: A randomized open-ended 9-year follow-up clinical trial. The International Journal of Oral & Maxillofacial Implants, 28, 891–895.

    Article  Google Scholar 

  • Roccuzzo, M., Bonino, L., Dalmasso, P., et al. (2014). Long-term results of a three arms prospective cohort study on implants in periodontally compromised patients: 10-year data around sandblasted and acid-etched (SLA) surface. Clinical Oral Implants Research, 25, 1105–1112.

    Article  Google Scholar 

  • Roehling, S., Schlegel, K. A., Woelfler, H., et al. (2019). Zirconia compared to titanium dental implants in preclinical studies-A systematic review and meta-analysis. Clinical Oral Implants Research, 30, 365–395.

    Article  Google Scholar 

  • Rokn, A. R., Badri, S., Rasouli Ghahroudi, A. A., et al. (2015). Comparison of bone loss around bone platform shift and non-bone platform shift implants after 12 months. Journal of Dentistry (Tehran), 12, 183–187.

    Google Scholar 

  • Rompen, E., Domken, O., Degidi, M., et al. (2006). The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clinical Oral Implants Research, 17(Suppl 2), 55–67.

    Article  Google Scholar 

  • Rossi, F., Lang, N. P., Ricci, E., et al. (2018). Long-term follow-up of single crowns supported by short, moderately rough implants-A prospective 10-year cohort study. Clinical Oral Implants Research, 29, 1212–1219.

    Article  Google Scholar 

  • Saghiri, M. A., Orangi, J., Tanideh, N., et al. (2014). Effect of endodontic cement on bone mineral density using serial dual-energy X-ray absorptiometry. Journal of Endodontics, 40, 648–651.

    Article  Google Scholar 

  • Saghiri, M., Asatourian, A., Garcia-Godoy, F., et al. (2016). The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments. Medicina oral, patologia oral y cirugia bucal, 21, e514–e525.

    Google Scholar 

  • Schneider, G. B., Perinpanayagam, H., Clegg, M., et al. (2003). Implant surface roughness affects osteoblast gene expression. Journal of Dental Research, 82, 372–376.

    Article  Google Scholar 

  • Schönichen, A., & Geyer, M. (2010). Fifteen formins for an actin filament: A molecular view on the regulation of human formins. Biochimica et Biophysica Acta, 1803, 152–163.

    Article  Google Scholar 

  • Shalabi, M. M., Gortemaker, A., Hof, M. V. T., et al. (2006). Implant surface roughness and bone healing: A systematic review. Journal of Dental Research, 85, 496–500.

    Article  Google Scholar 

  • Shibli, J. W., et al. (2007). Influence of implant surface topography on early osseointegration: A histological study in human jaws. Journal of Biomedical Materials Research Part B Applied Biomaterials, 80B, 377.

    Article  Google Scholar 

  • Shimabukuro, M. (2020). Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: A review. Antibiotics (Basel), 9, 716.

    Article  Google Scholar 

  • Shioya, K., Sawada, T., Miake, Y., et al. (2009). Ultrastructural study of tissues surrounding replanted teeth and dental implants. Clinical Oral Implants Research, 20, 299–305.

    Article  Google Scholar 

  • Souza, J. C. M., Sordi, M. B., Kanazawa, M., et al. (2019). Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 94, 112–131.

    Article  Google Scholar 

  • Steigenga, J. T., Al-Shammari, K. F., Nociti, F. H., et al. (2003). Dental implant design and its relationship to long-term implant success. Implant Dentistry, 12, 306–317.

    Article  Google Scholar 

  • Sul, Y. T., Johansson, C., Wennerberg, A., et al. (2005). Optimum surface properties of oxidized implants for reinforcement of osseointegration: Surface chemistry, oxide thickness, porosity, roughness, and crystal structure. International Journal of Oral & Maxillofacial Implants, 20, 349–359.

    Google Scholar 

  • Taba Júnior, M., Novaes, A. B., Jr., Souza, S. L., et al. (2003). Radiographic evaluation of dental implants with different surface treatments: An experimental study in dogs. Implant Dentistry, 12, 252–258.

    Article  Google Scholar 

  • Van Brakel, R., Meijer, G. J., Verhoeven, J. W., et al. (2012). Soft tissue response to zirconia and titanium implant abutments: An in vivo within-subject comparison. Journal of Clinical Periodontology, 39, 995–1001.

    Article  Google Scholar 

  • Vlacic-Zischke, J., Hamlet, S. M., et al. (2011). The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFb/BMP signalling in osteoblasts. Biomaterials-Guildford (Vol. 32, pp. 665–671).

    Google Scholar 

  • Wang, Q., Zhou, P., Liu, S., et al. (2020). Multi-scale surface treatments of titanium implants for rapid osseointegration: A review. Nanomaterials (Basel), 10, 1244.

    Article  Google Scholar 

  • Wennerberg, A., & Albrektsson, T. (2010). On implant surfaces: A review of current knowledge and opinions. The International Journal of Oral & Maxillofacial Implants, 25, 63–74.

    Google Scholar 

  • Wennerberg, A., Albrektsson, T., & Chrcanovic, B. (2018). Long-term clinical outcome of implants with different surface modifications. European Journal of Oral Implantology, 11(Suppl 1), S123–S136.

    Google Scholar 

  • Xue, T., Attarilar, S., Liu, S., et al. (2020). Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review. Frontiers in Bioengineering and Biotechnology, 8, 603072.

    Article  Google Scholar 

  • Yeo, I. L. (2019). Modifications of dental implant surfaces at the micro- and nano-level for enhanced osseointegration. Materials (Basel), 13, 89.

    Article  Google Scholar 

  • Yin, K., Wang, Z., Xin, F., et al. (2012). The experimental research on two-generation BLB dental implants – Part I: Surface modification and osseointegration. Clinical Oral Implants Research, 23, 846–852.

    Article  Google Scholar 

  • Zhang, J., Liu, J., Wang, C., et al. (2020). A comparative study of the osteogenic performance between the hierarchical micro/submicro-textured 3D-printed Ti6Al4V surface and the SLA surface. Bioactive Materials, 5, 9–16.

    Article  Google Scholar 

  • Zhang, Y., Gulati, K., Li, Z., et al. (2021). Dental implant nano-engineering: Advances, limitations and future directions. Nanomaterials (Basel), 11, 2489.

    Article  Google Scholar 

  • Zhao, G., Raines, A. L., Wieland, M., et al. (2007). Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials, 28, 2821–2829.

    Article  Google Scholar 

  • Zhao, B. H., Cui, F. Z., Liu, Y., et al. (2013). Histomorphometrical and clinical study of connective tissue around titanium dental implants with porous surfaces in a canine model. Journal of Biomaterials Applications, 27, 685–693.

    Article  Google Scholar 

  • Zweymüller, K. (2012). Bony Ongrowth on the surface of HA-coated femoral implants: An X-ray analysis. Zeitschrift fur Orthopadie und Unfallchirurgie, 150, 27–31.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China 81871492 (Yan Liu), Ten-Thousand Talents Program QNBJ2019-2 (Yan Liu), ITI Research Grant 1544-2020 (Yan Liu), Key R & D Plan of Ningxia Hui Autonomous Region 2020BCG01001 (Yan Liu), Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZLCX20212402, Yan Liu), Key Research Program of Central Health Commission 2022ZD18 (Ye Lin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Li, S., Lin, Y., Di, P., Liu, Y. (2023). Macro to Micro: Surface Modification of Titanium Dental Implants. In: Gulati, K. (eds) Surface Modification of Titanium Dental Implants. Springer, Cham. https://doi.org/10.1007/978-3-031-21565-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21565-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21564-3

  • Online ISBN: 978-3-031-21565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics