Skip to main content

Vibrational Spectroscopy of Hydrogen Molecules by Detecting H (D) and Its Use in Studies Relevant to Negative Ion Sources

  • Chapter
  • First Online:
Physics and Applications of Hydrogen Negative Ion Sources

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 124))

  • 335 Accesses

Abstract

In this chapter, we present a method for vibrational spectroscopy of hydrogen molecules based on the properties of the dissociative electron attachment. This method is most sensitive to highly excited molecules that are of primary importance for volume negative ion sources. Its sensitivity to highly excited molecules is the same for all hydrogen isotopologues. This makes the method suitable not only for studies relevant to the hydrogen ion volume sources but also for plasma-wall interaction studies in tokamaks. The basics of the method and two corresponding instruments are discussed. Results obtained using these instruments as well as the potential use of this technique for further studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G.R.A. Akkermans, I.G.J. Classen, R. Perillo, H.J. van der Meiden, F. Federici, S. Brezinšek, Phys. Plasmas 27, 102509 (2020). https://doi.org/10.1063/5.0017714

    Article  ADS  Google Scholar 

  • M. Allan, J. Electron Spectrosc. Relat. Phenom. 48, 219 (1989)

    Article  Google Scholar 

  • M. Allan, S.F. Wong, Phys. Rev. Lett. 41, 1791 (1978)

    Article  ADS  Google Scholar 

  • M. Bacal, G. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    Article  ADS  Google Scholar 

  • M. Bacal, M. Wada, Appl. Phys. Rev. 2, 021305 (2015)

    Article  ADS  Google Scholar 

  • M. Bacal, M. Wada, Plasma Sources Sci. Technol. 29, 033001 (2020)

    Article  ADS  Google Scholar 

  • M. Bacal, K. Maeshiro, S. Masaki, M. Wada, Plasma Sources Sci. Technol. 30, 075014 (2021)

    Article  ADS  Google Scholar 

  • J.N. Bardsley, J.M. Wadehra, Phys. Rev. A 20, 1398 (1979)

    Article  ADS  Google Scholar 

  • J.N. Bardsley, A. Herzenberg, F. Mandl, Proc. Phys. Soc. 89, 321 (1966)

    Article  ADS  Google Scholar 

  • S. Béchu, J.L. Lemaire, L. Gavilan, S. Aleiferis, V. Shakhatov, Y.A. Lebedev, D. Fombaron, L. Bonny, J. Menu, A. Bès, P. Svarnas, N. de Oliveira, J. Quant. Spectrosc. Radiat. Transf. 257, 107325 (2020)

    Article  Google Scholar 

  • M. Cacciatore, M. Rutigliano, Plasma Sources Sci. Technol. 18, 023002 (2009)

    Article  ADS  Google Scholar 

  • I. Čadež, R.I. Hall, M. Landau, F. Pichou, C. Schermann, J. Phys. B Atomic Mol. Phys. 21, 3271 (1988)

    Article  ADS  Google Scholar 

  • I. Čadež, C. Schermann, M. Landau, F. Pichou, D. Popović, R.I. Hall, Z. Phys. D 26, 328 (1993)

    Article  ADS  Google Scholar 

  • I. Čadež, R.I. Hall, M. Landau, F. Pichou, C. Schermann, J. Chem. Phys. 106, 4745 (1997)

    Article  ADS  Google Scholar 

  • I. Čadež, R.I. Hall, M. Landau, F. Pichou, M. Winter, C. Schermann, Acta Chim. Slov. 51, 11 (2004)

    Google Scholar 

  • I. Čadež, S. Markelj, A.R. Milosavljević, Nucl. Eng. Des. 241, 1267 (2011)

    Article  Google Scholar 

  • I. Čadež, S. Markelj, A. Založnik, Proc. 24th Int. Conf. Nuclear Energy for New Europe 2015, Portorož, Slovenia, September 14-17, Nuclear Society of Slovenia (NSS), (2015) p. 706

    Google Scholar 

  • M. Capitelli, M. Cacciatore, R. Celiberto, O. De Pascale, P. Diomede, F. Esposito, A. Gicquel, C. Gorse, K. Hassouni, A. Laricchiuta, S. Longo, D. Pagano, M. Rutigliano, Nucl. Fusion 46, S260 (2006)

    Article  Google Scholar 

  • S. Cvejanović, F.H. Read, J. Phys. B 7, 1180 (1974)

    Article  ADS  Google Scholar 

  • H. Drexel, G. Senn, T. Fiegele, P. Scheier, A. Stamatović, N.J. Mason, T.D. Mark, J. Phys. B Atomic Mol. Phys. 34, 1415 (2001)

    Article  ADS  Google Scholar 

  • P.J. Eenshuistra, J.H.M. Bonnie, J. Loss, H.J. Hopman, Phys. Rev. Lett. 60, 341 (1988)

    Article  ADS  Google Scholar 

  • I.I. Fabrikant, S. Eden, N.J. Mason, J. Fedor, in Advances in Atomic, Molecular, and Optical Physics, ed. by E. Arimondo, C. C. Lin, S. F. Yelin, vol. 66, (Academic Press, Burlington, 2017), p. 545

    Google Scholar 

  • U. Fantz, D. Wünderlich, Franck–Condon Factors, in Transition Probabilities and Radiative Lifetimes for Hydrogen Molecules and Their Isotopomers, INDC(NDS)-457, IAEA, Vienna, Austria (2004). http://www-amdis.iaea.org/data/INDC-457

  • U. Fantz, D. Reiter, B. Heger, D. Coster, J. Nucl. Mater. 290-293, 367 (2001)

    Article  ADS  Google Scholar 

  • O. Gabriel, J.J.A. van den Dungen, D.C. Schram, R. Engeln, J. Chem. Phys. 132, 104305 (2010)

    Article  ADS  Google Scholar 

  • O. Galparsoro, R. Pétuya, J.I. Juaristi, C. Crespos, M. Alducin, P. Larrégaray, J. Phys. Chem. C 119, 15434 (2015)

    Article  Google Scholar 

  • J.P. Gauyacq, J. Phys. B 18, 1859 (1985)

    Article  ADS  Google Scholar 

  • S. Gough, C. Schermann, F. Pichou, M. Landau, I. Čadež, R.I. Hall, Astron. Astrophys. 305, 687 (1996)

    ADS  Google Scholar 

  • C. Guillemaut, R.A. Pitts, A.S. Kukushkin, J.P. Gunn, J. Bucalossi, G. Arnoux, P. Belo, S. Brezinsek, M. Brix, G. Corrigan, S. Devaux, J. Flanagan, M. Groth, D. Harting, A. Huber, S. Jachmich, U. Kruezi, M. Lehnen, C. Marchetto, S. Marsen, A.G. Meigs, O. Meyer, M. Stamp, J.D. Strachan, S. Wiesen, M. Wischmeier, JET EFDA Contributors, Nucl. Fusion 54, 093012 (2014)

    Article  ADS  Google Scholar 

  • R.I. Hall, G. Joyez, J. Mazeau, J. Reinhardt, C. Schermann, J. Phys. France 34, 827 (1973)

    Article  Google Scholar 

  • R.I. Hall, I. Čadež, M. Landau, F. Pichou, C. Schermann, Phys. Rev. Lett. 60, 337 (1988)

    Article  ADS  Google Scholar 

  • R.S. Hemsworth, D. Boilson, P. Blatchford, P.M. Dalla, G. Chitarin, H.P.L. de Esch, F. Geli, M. Dremel, J. Graceffa, D. Marcuzzi, G. Serianni, D. Shah, M. Singh, M. Urbani, P. Zaccaria, New J. Phys. 19, 025005 (2017)

    Article  ADS  Google Scholar 

  • E.M. Hollmann, A.Y. Pigarov, Z. Yan, Phys. Plasmas 13, 052510 (2006)

    Article  ADS  Google Scholar 

  • J. Horáček, M. Čížek, K. Houfek, P. Kolorenč, W. Domcke, Phys. Rev. A 70, 052712 (2004)

    Article  ADS  Google Scholar 

  • B. Jackson, X. Sha, Z.B. Guvenc, J. Chem. Phys. 116, 2599 (2002)

    Article  ADS  Google Scholar 

  • T. Kammler, J. Lee, J. Kuppers, J. Chem. Phys. 106, 7362 (1997)

    Article  ADS  Google Scholar 

  • S. Krasheninnikov, A. Smolyakov, A. Kukushkin, On the Edge of Magnetic Fusion Devices, Springer Series in Plasma Science and Technology (Springer Nature Switzerland AG, Cham, 2020)

    Book  Google Scholar 

  • E. Krishnakumar, S. Denifl, I. Čadež, S. Markelj, N.J. Mason, Phys. Rev. Lett. 106, 243201 (2011)

    Article  ADS  Google Scholar 

  • A.S. Kukushkin, H.D. Pacher, V. Kotov, D. Reiter, D. Coster, G.W. Pacher, Nucl. Fusion 45, 608 (2005)

    Article  ADS  Google Scholar 

  • S. Markelj, Interaction and Production of Vibrationally Excited Hydrogen Molecules on Surfaces, PhD Thesis. University of Ljubljana, Slovenia (2010)

    Google Scholar 

  • S. Markelj, I. Čadež, J. Chem. Phys. 134, pp124707 (2011)

    Article  ADS  Google Scholar 

  • S. Markelj, I. Čadež, P. Pelicon, Z. Rupnik, Nucl. Instr. Methods B 259, 989 (2007)

    Article  ADS  Google Scholar 

  • S. Markelj, Z. Rupnik, I. Čadež, Int. J. Mass Spectrom. 275, 64 (2008)

    Article  Google Scholar 

  • S. Markelj, O.V. Ogorodnikova, P. Pelicon, T. Schwarz-Selinger, I. Čadež, Appl. Surf. Sci. 282, 478 (2013)

    Article  ADS  Google Scholar 

  • S. Markelj, A. Založnik, I. Čadež, J. Vac. Sci. Technol. A 35, 061602 (2017)

    Article  Google Scholar 

  • T. Mosbach, H.-M. Katsch, H.F. Döbele, Phys. Rev. Lett. 85, 3420 (2000)

    Article  ADS  Google Scholar 

  • E. Nicolopoulou, M. Bacal, H.J. Doucet, J. Phys. (Paris) 38, 1399 (1977)

    Article  Google Scholar 

  • A. Okamoto, S. Kado, K. Sawada, Y. Kuwahara, Y. Iida, S. Tanaka, J. Nucl. Mater. 363–365, 395 (2007)

    Article  ADS  Google Scholar 

  • R. Pétuya, P. Larrégaray, C. Crespos, P. Aurel, H.F. Busnengo, A.E. Martínez, J. Phys. Chem. C 119, 3171 (2015)

    Article  Google Scholar 

  • D. Popović, I. Čadež, M. Landau, F. Pichou, C. Schermann, R.I. Hall, Meas. Sci. Technol. 1, 1041 (1990)

    Article  ADS  Google Scholar 

  • V.S. Prabhudesai, N.J. Mason, E. Krishnakumar, J. Phys. Conf. Ser. 1412, 052006 (2020)

    Article  Google Scholar 

  • D. Rapp, T.E. Sharp, D.D. Briglia, Phys. Rev. Lett. 14, 533 (1965)

    Article  ADS  Google Scholar 

  • F.H. Read, N.J. Bowring, Nucl. Inst. Methods Phys. Res. A 645, 273–277 (2011). http://www.electronoptics.com/

  • D. Reiter, M. Baelmans, P. Börner, Fusion Sci. Technol. 47, 172 (2005). http://www.eirene.de/

  • C. T. Rettner, M. N. R. Ashfold (eds.), Dynamics of Gas-Surface Interaction (The Royal Society of Chemistry, Cambridge, 1991)

    Google Scholar 

  • C.T. Rettner, D.J. Auerbach, Phys. Rev. Lett. 74, 4551 (1995)

    Article  ADS  Google Scholar 

  • M. Rutigliano, M. Cacciatore, Phys. Chem. Chem. Phys. 13, 7475 (2011)

    Article  Google Scholar 

  • C. Schermann, R.I. Hall, M. Landau, F. Pichou, I. Čadež, AIP Conf. Proc. 210, 159 (1991)

    Article  ADS  Google Scholar 

  • C. Schermann, F. Pichou, M. Landau, I. Čadež, R.I. Hall, J. Chem. Phys. 101, 8152 (1994)

    Article  ADS  Google Scholar 

  • M. Schluter, C. Hopf, T. Schwarz-Selinger, W. Jacob, J. Nucl. Mater. 376, 33 (2008)

    Article  ADS  Google Scholar 

  • G.J. Schultz, R.K. Asundi, Phys. Rev. 158, 25 (1967)

    Article  ADS  Google Scholar 

  • G.J. Schulz, Phys. Rev. 113, 816 (1959)

    Article  ADS  Google Scholar 

  • T. Schwarz-Selinger, A. von Keudell, W. Jacob, J. Vac. Sci. Technol. A 18, 995 (2000)

    Article  Google Scholar 

  • D.T. Stibbe, J. Tennyson, J. Phys. B Atomic Mol. Phys. 31, 815 (1998)

    Article  ADS  Google Scholar 

  • F. Taccogna, S. Bechu, et al., Eur. Phys. J. D 75, 227 (2021)

    Article  ADS  Google Scholar 

  • P.W. Tamm, L.D. Schmidt, J. Chem. Phys. 51, 5352 (1969)

    Article  ADS  Google Scholar 

  • M. Tronc, F. Fiquet-Fayard, C. Schermann, R.I. Hall, J. Phys. B 10, 305 (1977)

    Article  ADS  Google Scholar 

  • M. Tronc, R.I. Hall, C. Schermann, H.S. Taylor, J. Phys. B 12, L279 (1979)

    Article  ADS  Google Scholar 

  • K.G. Tschersich, J.P. Fleischhauer, H. Schuler, J. Appl. Phys. 104, 034908 (2008)

    Article  ADS  Google Scholar 

  • H. Umemoto, Chem. Vap. Depos. 16, 275 (2010)

    Article  Google Scholar 

  • K. Verhaegha, B. Lipschultz, J. Harrison, B. Duval, C. Bowman, A. Fil, D.S. Gahle, D. Moulton, O. Myatra, A. Perek, C. Theiler, M. Wensing, MST1 team, TCV team, preprint, to be published (2020). https://doi.org/10.13140/RG.2.2.28699.49441

  • J.M. Wadehra, J.N. Bardsley, Phys. Rev. Lett. 41, 1795 (1978)

    Article  ADS  Google Scholar 

  • A. Winkler, Appl. Phys. A Mater. Sci. Process. 67, 637 (1998)

    Article  ADS  Google Scholar 

  • L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993)

    Article  ADS  Google Scholar 

  • J.-S. Yoon, Y.-W. Kim, D.-C. Kwon, M.-Y. Song, W.-S. Chang, C.-G. Kim, V. Kumar, B.J. Lee, Rep. Prog. Phys. 73, 116401 (2010)

    Article  ADS  Google Scholar 

  • A. Založnik, Interaction of Atomic Hydrogen with Materials Used for Plasma-Facing Wall in Fusion Devices, PhD Thesis, University of Ljubljana, Slovenia (2016)

    Google Scholar 

  • A. Založnik, I. Čadež, S. Markelj, V. Žigman, Proc. 22nd Int. Conf. Nuclear Energy for New Europe 2013, Bled, Slovenia, September 9-12, Nuclear Society of Slovenia (NSS) (2013), p. 1406

    Google Scholar 

  • A. Založnik, S. Markelj, I. Čadež, Proc. 23rd Int. Conf. Nuclear Energy for New Europe 2014, Portorož, Slovenia, September 8-11, Nuclear Society of Slovenia (NSS) (2014), p. 1104

    Google Scholar 

  • A. Založnik, P. Pelicon, Z. Rupnik, I. Čadež, S. Markelj, Nucl. Instr. Methods B 371, 167–173 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge collaboration with colleagues from Paris, Belgrade, and Ljubljana as well as financial support for this work by various institutions. Experimental activity on the project in Ljubljana was greatly facilitated thanks to the loan of experimental equipment for hydrogen vibrational spectroscopy from Université Pierre et Marie Curie, Paris, France by an agreement between CNRS, France and JSI, Slovenia, which is gratefully acknowledged. Special thanks are due to R. I. Hall for initiating the work on the described spectroscopy method, long-time collaboration, and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Čadež .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Čadež, I., Markelj, S. (2023). Vibrational Spectroscopy of Hydrogen Molecules by Detecting H (D) and Its Use in Studies Relevant to Negative Ion Sources. In: Bacal, M. (eds) Physics and Applications of Hydrogen Negative Ion Sources. Springer Series on Atomic, Optical, and Plasma Physics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-031-21476-9_13

Download citation

Publish with us

Policies and ethics