Skip to main content

The Digital Twin in Human Activities: The Personal Digital Twin

  • Chapter
  • First Online:
The Digital Twin

Abstract

With the 5G era evolving continuously towards maturity, ICDT deep convergence is accelerating, and so is the transformation of our society. Simultaneously, advanced exploration of the 6G vision where a new era of “Digital Twins, Pervasive Connectivity with Ubiquitous Intelligence” is emerging. We expect the physical, biological, and cyber worlds to be fused together via the new generation of intelligent connectivity. In such an era, everyone may have his or her own Personal Digital Twin (PDT) in the cyber world. Such a PDT may include the person’s external appearance, as well its internal organs and tissues. The PDT may be used to predict human health, behavior, and emotion in advance of developments warranting concerns or requiring attention, and even simulate people’s thoughts to realize spiritual immortality in some extreme sense. Our PDTs can be transmitted to any place in the world in real time through the pervasive network for various activities, be it attending a concert, enjoying the beaches and sunshine of the Maldives, or hugging family members and friends that are oceans apart.

This chapter will examine the usage scenarios of PDT, the challenges and the wide varieties of technologies involved, encompassing PDT information acquisition, transmission, processing, and presentation. In particular, wireless body area networks (WBANs) and multi-source data fusion will be highlighted. PDTs will rely on the joint development of many technologies from multiple disciplines, such as brain-computer communications, molecular communications, synesthesia interconnection, AI, and intelligent interaction. We will present a variety of health-care applications as part of a very early-stage list of accomplishments in our PDT platform development as well as the outlook of PDT related developments across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertin, E., Crespi, N., & Magedanz, T. (Eds.). (2021, December). Shaping future 6G networks: Needs, impacts and technologies. Wiley-IEEE Press. ISBN: 978-1-119-76551-6.

    Google Scholar 

  2. Liu, G., Huang, Y., Li, N., et al. (2020). Vision, requirements and network architecture of 6G mobile network beyond 2030 [J]. China Communications, 17(9), 92–104.

    Article  Google Scholar 

  3. Musk, E., & Neuralink. (2019). An integrated brain-machine interface platform with thousands of channels. BioRxiv, 703801. https://doi.org/10.1101/703801

  4. “First virtual student, completely driven by AI”. https://lifearchitect.ai/zhibing-hua/

  5. Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., et al. (2000). Brain-computer interface technology: A review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164–173.

    Article  Google Scholar 

  6. Fernández-Medina, M., Ramos-Docampo, M. A., Hovorka, O., Salgueiriño, V., & Städler, B. (2020). Recent advances in nano- and micromotors. Advanced Functional Materials, 30(12), 1908283.

    Article  Google Scholar 

  7. Kulakowski, P., Turbic, K., & Correia, L. M. (2020). From nano-communications to body area networks: A perspective on truly personal communications. IEEE Access, 8, 159839–159853.

    Article  Google Scholar 

  8. Kuscu, M., Dinc, E., Bilgin, B. A., Ramezani, H., & Akan, O. B. (2019). Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding, and detection techniques. Proceedings of the IEEE, 107(7), 1302–1341.

    Article  Google Scholar 

  9. Akan, O. B., Ramezani, H., Khan, T., Abbasi, N. A., & Kuscu, M. (2017). Fundamentals of molecular information and communication science. Proceedings of the IEEE, 105(2), 306–318.

    Article  Google Scholar 

  10. Zafar, S., Nazir, M., Bakhshi, T., Khattak, H. A., Khan, S., Bilal, M., et al. (2021). A systematic review of bio-cyber Interface technologies and security issues for internet of bio-Nano things. IEEE Access, 9, 93529–93566.

    Article  Google Scholar 

  11. Akyildiz, I. F., Ghovanloo, M., Guler, U., Ozkaya-Ahmadov, T., Sarioglu, A. F., & Unluturk, B. D. (2020). PANACEA: An internet of Bio-NanoThings application for early detection and mitigation of infectious diseases. IEEE Access, 8, 140512–140523.

    Article  Google Scholar 

  12. Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., & Koucheryavy, Y. (2015). The internet of Bio-Nano things. IEEE Communications Magazine, 53(3), 32–40.

    Article  Google Scholar 

  13. Mapara, S. S., & Patravale, V. B. (2017). Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment. Journal of Controlled Release, 261, 337–351.

    Article  Google Scholar 

  14. Ketterl, T. P., Arrobo, G. E., & Gitlin, R. D. (2013, April). SAR and BER evaluation using a simulation test bench for in vivo communication at 2.4 GHz (pp. 1–4). IEEE WAMICON.

    Google Scholar 

  15. He, C., Liu, Y., Ketterl, T. P., Arrobo, G. E., & Gitlin, R. D. (2014). MIMO in vivo (pp. 1–4). WAMICON.

    Google Scholar 

  16. He, C., Yang, L., Ketterl, T. P., Arrobo, G. E., & Gitlin, R. D. (2014). Performance evaluation for MIMO in vivo WBAN systems. In 2014 IEEE MTT-S international microwave workshop series on RF and wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014). https://doi.org/10.1109/IMWS-BIO.2014.7032380

    Chapter  Google Scholar 

  17. Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., & Grosse-Wentrup, M. (2016). Transfer learning in brain-computer interfaces [J]. IEEE Computational Intelligence Magazine, 11(1), 20–31.

    Article  Google Scholar 

  18. Feng, O., & Zhang, Y. (2016). Review on research Progress of wireless body area network [J]. Electronic Science and Technology, 12, 173–179.

    Google Scholar 

  19. IEEE Standard Association. (2012). IEEEStd 802.15.6TM-2006, IEEE standard for local and metropolitan area network-Part 15.4 wireless personal area networks[S]. IEEE Standard Association.

    Google Scholar 

  20. Li, Z. P., Zhang, J., Cai, S. B., et al. (2013). Review on molecular communication [J]. Journal on Communications.

    Google Scholar 

  21. The vision needs and challenges (White Paper) of 6G, Vivo Communications Research Institute, 2020. https://wenku.baidu.com/view/7bb3ba25cf2f0066f5335a8102d276a2012960ff.html

  22. Fox, D. (2021, December 14). Stretchy electronics go wireless for flexible wearables. Nature. https://doi.org/10.1038/d41586-021-03757-z. PMID: 34907371.

  23. Geethanjali, P. (2016, July). Myoelectric control of prosthetic hands: State-of-the-art review. Medical Devices, 9, 247–255. https://doi.org/10.2147/MDER.S91102, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968852/. PMID: 27555799.

  24. de Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson’s disease. Lancet Neurology, 5, 525–535.

    Article  Google Scholar 

  25. Guo, X., Zuxin, C., Xu, C., et al. (2021). Intestinal dysfunction induces Parkinson’s disease [J]. Journal of Central China University of Science and Technology (Medical Edition), 4. https://doi.org/10.3870/j.issn.1672-0741.2021.04.023

  26. Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis [J]. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.

    Article  Google Scholar 

  27. Lewis, M. M., Du, G., Sen, S., Kawaguchi, A., Tmong, Y., Lee, S., et al. (2011). Differential involvement of striato- and cerebello-thalamo-cortical pathways in tremor-and akinetic/rigid-predominant Parkinson’s disease. Neuroscience, 177, 230–239.

    Article  Google Scholar 

  28. de Oliveira Gondim, I. T. G., de Souza, C. C. B., Rodrigues, M. A. B., Azevedo, I. M., de Sales Coriolano, M., & Lins, O. G. (2020, September, October). Portable accelerometers for the evaluation of spatio-temporal gait parameters in people with Parkinson’s disease: An integrative review. Archives of Gerontology and Geriatrics, 90, 104097. https://doi.org/10.1016/j.archger.2020.104097

  29. Zheng, Z., & Chih-Lin, I. et al. A lightweight multi-system fusion BCI platform for personal digital twin, in draft.

    Google Scholar 

  30. Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7, 167653–167671.

    Article  Google Scholar 

  31. Barricelli, B. R., Casiraghi, E., Gliozzo, J., Petrini, A., & Valtolina, S. (2020). Human digital twin for fitness management. IEEE Access, 8, 26637–26664.

    Article  Google Scholar 

  32. Khanna, V. K. (2021, February). Nanosensors: Physical, chemical, and biological. CRC Press. ISBN 9780367457051.

    Google Scholar 

  33. IEEE 1906.1-2015 – IEEE recommended practice for nanoscale and molecular communication framework. https://standards.ieee.org/standard/1906_1-2015.html. December, 2015.

  34. IEEE 1906.1.1-2020 – IEEE standard data model for nanoscale communication systems. https://standards.ieee.org/project/1906_1_1.html. September, 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Lin I .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

I, CL., Zheng, Z. (2023). The Digital Twin in Human Activities: The Personal Digital Twin. In: Crespi, N., Drobot, A.T., Minerva, R. (eds) The Digital Twin. Springer, Cham. https://doi.org/10.1007/978-3-031-21343-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21343-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21342-7

  • Online ISBN: 978-3-031-21343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics