Skip to main content

Augmented Reality Training in Manufacturing Sectors

  • Chapter
  • First Online:
The Digital Twin
  • 3299 Accesses

Abstract

This chapter provides an overview of Augmented Reality (AR) as a training tool in manufacturing sectors, with a focus on manual assembly procedures. The proposed analysis investigates the two main components of an AR training system, the content creation or expertise capture (i.e., authoring) and the content consumption or information conveyance (i.e., training), separately, as they are generally treated in the literature. Finally, we present a classification of information conveyance mediums in AR, a relevant topic particularly for AR usage in industrial context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, M., & Annunziata, M. (2017). Augmented reality is already improving worker performance. https://hbr.org/2017/03/augmented-reality-is-already-improving-worker-performance

  2. Angrisani, L., Arpaia, P., Esposito, A., & Moccaldi, N. (2020). A wearable brain-computer interface instrument for augmented reality-based inspection in Industry 4.0. IEEE Transactions on Instrumentation and Measurement, 69(4), 1530–1539. https://doi.org/10.1109/TIM.2019.2914712

    Article  Google Scholar 

  3. Arbeláez, J. C., Viganò, R., & Osorio-Gómez, G. (2019). Haptic Augmented Reality (HapticAR) for assembly guidance. International Journal on Interactive Design and Manufacturing, 13(2), 673–687. https://doi.org/10.1007/S12008-019-00532-3

    Article  Google Scholar 

  4. Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6, 355–385. http://www.cs.unc.edu/~azumaW:

  5. Baird, K. M., & Barfield, W. (1999). Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Reality, 4(4), 250–259. https://doi.org/10.1007/BF01421808

    Article  Google Scholar 

  6. Bellalouna, F. (2020). Industrial use cases for augmented reality application. In 11th IEEE international conference on cognitive infocommunications, CogInfoCom 2020 – Proceedings, September, pp. 10–18. https://doi.org/10.1109/CogInfoCom50765.2020.9237882

  7. Bhattacharya, B., & Winer, E. H. (2019). Augmented reality via expert demonstration authoring (AREDA). Computers in Industry, 105, 61–79. https://doi.org/10.1016/j.compind.2018.04.021

    Article  Google Scholar 

  8. Biard, N., Cojean, S., & Jamet, E. (2018). Effects of segmentation and pacing on procedural learning by video. Computers in Human Behavior, 89, 411–417. https://doi.org/10.1016/j.chb.2017.12.002

    Article  Google Scholar 

  9. Billinghurst, M., Kato, H., & Myojin, S. (2009). Advanced interaction techniques for augmented reality applications. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5622 LNCS (Issue May 2014), 13–22. https://doi.org/10.1007/978-3-642-02771-0_2

  10. Biocca, F., Tang, A., Owen, C., Xiao, F., & Lab, M. (2006). Attention funnel: Omnidirectional 3D cursor for mobile augmented reality platforms. In Proceedings of the SIGCHI conference on human factors in computing systems. https://doi.org/10.1145/1124772

  11. Blattgerste, J., Renner, P., Strenge, B., & Pfeiffer, T. (2018). In-situ instructions exceed side-by-side instructions in augmented reality assisted assembly. In Proceedings of the 11th PErvasive technologies related to assistive environments conference, pp. 133–140. https://doi.org/10.1145/3197768.3197778

  12. Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., & Essig, K. (2017). Comparing conventional and augmented reality instructions for manual assembly tasks. In ACM international conference proceeding series, Part F128530, pp. 75–82. https://doi.org/10.1145/3056540.3056547

  13. Bosch, T., Könemann, R., De Cock, H., & Van Rhijn, G. (2017). The effects of projected versus display instructions on productivity, quality and workload in a simulated assembly task. In ACM international conference proceeding series, Part F1285, pp. 412–415. https://doi.org/10.1145/3056540.3076189

  14. Bottani, E., & Vignali, G. (2019). Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Transactions, 51(3), 284–310. https://doi.org/10.1080/24725854.2018.1493244

    Article  Google Scholar 

  15. Breedveld, P. (1997). Observation, manipulation, and eye-hand coordination problems in minimally invasive surgery. In Proceedings of the XVI European annual conference on human decision making and manual control, pp. 9–11. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.497.4423

  16. Cao, Y., Wang, T., Qian, X., Rao, P. S., Wadhawan, M., Huo, K., & Ramani, K. (2019). GhostAR: A time-space editor for embodied authoring of human-robot collaborative task with augmented reality. In Proceedings of the 32nd annual ACM symposium on user interface software and technology, pp. 521–534. https://doi.org/10.1145/3332165.3347902

  17. Carroll, L., & Wiebe, E. N. (2004). Static versus dynamic presentation of procedural instruction: Investigating the efficacy of video-based delivery. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 48(7), 1059–1063. https://doi.org/10.1177/154193120404800712

    Article  Google Scholar 

  18. Caudell, T. P., & Mizell, D. W. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes (Vol. 2, pp. 659–669). https://doi.org/10.1109/HICSS.1992.183317

  19. Caudell, T. P., & Mizell, D. W. (2003, February). Augmented reality: An application of heads-up display technology to manual manufacturing processes (Vol. 2, pp. 659–669. https://doi.org/10.1109/hicss.1992.183317

  20. Ceruti, A., Marzocca, P., Liverani, A., & Bil, C. (2019). Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing. Journal of Computational Design and Engineering, 6(4), 516–526. https://doi.org/10.1016/j.jcde.2019.02.001

    Article  Google Scholar 

  21. Chang, M. M. L., Ong, S. K., & Nee, A. Y. C. (2017). AR-guided product disassembly for maintenance and remanufacturing. Procedia CIRP, 61, 299–304. https://doi.org/10.1016/j.procir.2016.11.194

    Article  Google Scholar 

  22. Conway, S. (2019). The Total Economic Impact TM Of PTC Vuforia – Cost savings and business benefits enabled by Industrial Augmented Reality (Issue July). https://www.ptc.com/-/media/Files/PDFs/Augmented-Reality/The-Total-Economic-Impact-of-PTC-Vuforia_2019.pdf

  23. Courpasson, D., Clegg, F., & Clegg, S. (2012). Resisters at work: Generating productive resistance in the workplace. Organization Science, 23(3), 801–819. https://doi.org/10.1287/orsc.1110.0657

    Article  Google Scholar 

  24. Danielsson, O., Syberfeldt, A., Holm, M., & Wang, L. (2018). Operators perspective on augmented reality as a support tool in engine assembly. Procedia CIRP, 72, 45–50. https://doi.org/10.1016/j.procir.2018.03.153

    Article  Google Scholar 

  25. de Souza Cardoso, L. F., Mariano, F. C. M. Q., & Zorzal, E. R. (2020). A survey of industrial augmented reality. Computers & Industrial Engineering, 139(November 2019), 106159. https://doi.org/10.1016/j.cie.2019.106159

    Article  Google Scholar 

  26. Dey, A., Billinghurst, M., Lindeman, R. W., & Swan, J. E. (2018). A systematic review of 10 years of Augmented Reality usability studies: 2005 to 2014. Frontiers Robotics AI, 5(APR). https://doi.org/10.3389/frobt.2018.00037

  27. Doshi, A., Smith, R. T., Thomas, B. H., & Bouras, C. (2017). Use of projector based augmented reality to improve manual spot-welding precision and accuracy for automotive manufacturing. International Journal of Advanced Manufacturing Technology, 89(5–8), 1279–1293. https://doi.org/10.1007/s00170-016-9164-5

    Article  Google Scholar 

  28. Eckhoff, D., Sandor, C., Lins, C., Eck, U., Kalkofen, D., & Hein, A. (2018). TutAR: Augmented reality tutorials for hands-only procedures. In Proceedings – VRCAI 2018: 16th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry, October 2020. https://doi.org/10.1145/3284398.3284399

  29. Egger, J., & Masood, T. (2020). Augmented reality in support of intelligent manufacturing – A systematic literature review. Computers & Industrial Engineering, 140(February 2020), 106195. https://doi.org/10.1016/j.cie.2019.106195

    Article  Google Scholar 

  30. Erkoyuncu, J. A., del Amo, I. F., Dalle Mura, M., Roy, R., & Dini, G. (2017). Improving efficiency of industrial maintenance with context aware adaptive authoring in augmented reality. CIRP Annals - Manufacturing Technology, 66(1), 465–468. https://doi.org/10.1016/j.cirp.2017.04.006

    Article  Google Scholar 

  31. Fernández del Amo, I., Erkoyuncu, J. A., Roy, R., Palmarini, R., & Onoufriou, D. (2018). A systematic review of Augmented Reality content-related techniques for knowledge transfer in maintenance applications. Computers in Industry, 103, 47–71. https://doi.org/10.1016/j.compind.2018.08.007

    Article  Google Scholar 

  32. Fiorentino, M., Uva, A. E., Gattullo, M., Debernardis, S., & Monno, G. (2014). Augmented reality on large screen for interactive maintenance instructions. Computers in Industry, 65(2), 270–278. https://doi.org/10.1016/j.compind.2013.11.004

    Article  Google Scholar 

  33. Fischer, G. (2001). User modeling in human-computer interaction. User Modeling and User-Adapted Interaction, 11(1–2), 65–86. https://doi.org/10.1023/A:1011145532042

    Article  MATH  Google Scholar 

  34. Fite-Georgel, P. (2011). Is there a reality in Industrial Augmented Reality? In 2011 10th IEEE international symposium on mixed and augmented reality, ISMAR 2011, pp. 201–210. https://doi.org/10.1109/ISMAR.2011.6092387

  35. Foley, D. J., vad Dam, A., Feiner K. S., & Hughes F. J. (2004). Computer graphics: Principles and practice. https://books.google.fr/books?id=-4ngT05gmAQC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false

  36. Fournier-Viger, P., Nkambou, R., & Mephu Nguifo, E. (2009). Exploiting partial problem spaces learned from users’ interactions to provide key tutoring services in procedural and Ill-defined domains. Frontiers in Artificial Intelligence and Applications, 200(1), 383–390. https://doi.org/10.3233/978-1-60750-028-5-383

    Article  Google Scholar 

  37. Fraga-Lamas, P., Fernández-Caramés, T. M., Blanco-Novoa, Ó., & Vilar-Montesinos, M. A. (2018). A review on industrial augmented reality systems for the Industry 4.0 shipyard. IEEE Access, 6, 13358–13375. https://doi.org/10.1109/ACCESS.2018.2808326

    Article  Google Scholar 

  38. Friedrich, W. (2002). ARVIKA-augmented reality for development, production and service. In Proceedings – International symposium on mixed and augmented reality, ISMAR 2002, pp. 3–4. https://doi.org/10.1109/ISMAR.2002.1115059

  39. Funk, M., Kosch, T., & Schmidt, A. (2016). Interactive worker assistance: Comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. In UbiComp 2016 – Proceedings of the 2016 ACM International joint conference on pervasive and ubiquitous computing, July 2018, pp. 934–939. https://doi.org/10.1145/2971648.2971706

  40. Funk, M., Mayer, S., & Schmidt, A. (2015). Using in-situ projection to support cognitively impaired workers at the workplace. In ASSETS 2015 – Proceedings of the 17th international ACM SIGACCESS conference on computers and accessibility, pp. 185–192. https://doi.org/10.1145/2700648.2809853

  41. Gattullo, M., Evangelista, A., Uva, A. E., Fiorentino, M., & Gabbard, J. (2020). What, how, and why are visual assets used in industrial augmented reality? A systematic review and classification in maintenance, assembly, and training (from 1997 to 2019). IEEE Transactions on Visualization and Computer Graphics, 2626(c), 1–1. https://doi.org/10.1109/tvcg.2020.3014614

    Article  Google Scholar 

  42. Gattullo, M., Scurati, G. W., Fiorentino, M., Uva, A. E., Ferrise, F., & Bordegoni, M. (2019). Towards augmented reality manuals for industry 4.0: A methodology. Robotics and Computer-Integrated Manufacturing, 56(October 2018), 276–286. https://doi.org/10.1016/j.rcim.2018.10.001

    Article  Google Scholar 

  43. Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments, 23(6), 778–798. https://doi.org/10.1080/10494820.2013.815221

    Article  Google Scholar 

  44. Geng, J., Song, X., Pan, Y., Tang, J., Liu, Y., Zhao, D., & Ma, Y. (2020). A systematic design method of adaptive augmented reality work instruction for complex industrial operations. Computers in Industry, 119, 103229. https://doi.org/10.1016/j.compind.2020.103229

    Article  Google Scholar 

  45. Gonzalez, A. N. V., Kapalo, K., Koh, S., Sottilare, R., Garrity, P., & Laviola, J. J. (2019). A comparison of desktop and augmented reality scenario based training authoring tools. In 2019 IEEE conference on virtual reality and 3D user interfaces (VR), pp. 1199–1200. https://doi.org/10.1109/VR.2019.8797973

  46. Grimin, P., Haller, M., & Reinhold, S. (2002). AMIRE – Authoring mixed reality. In Augmented reality toolkit, The first IEEE international workshop. https://doi.org/10.1109/ART.2002.1107008

  47. Grote, G. (2004). Uncertainty management at the core of system design. Annual Reviews in Control, 28(2), 267–274. https://doi.org/10.1016/j.arcontrol.2004.03.001

    Article  Google Scholar 

  48. Grote, G., & Weichbrodt, J. C. (2007). Uncertainty management through flexible routines in a high-risk uncertainty management through flexible routines in a high-risk organization Swiss Federal Institute of Technology (ETH Zürich) 2nd Annual Cambridge Conference on Regulation, Inspection.

    Google Scholar 

  49. Gruenefeld, U., Ennenga, D., Ali, A. El, Heuten, W., & Boll, S. (2017). EyeSee360: Designing a visualization technique for out-of-view objects in head-mounted augmented reality. In SUI 2017 – Proceedings of the 2017 Symposium on Spatial User Interaction, pp. 109–118. https://doi.org/10.1145/3131277.3132175

  50. Gupta, A., Fox, D., Curless, B., & Cohen, M. (2012). DuploTrack: A real-time system for authoring and guiding Duplo Block assembly. In Proceedings of the 25th annual ACM symposium on user interface software and technology. https://doi.org/10.1145/2380116

  51. Ha, T., & Woo, W. (2007). Graphical tangible user interface for a AR authoring tool in product design environment. In CEUR Workshop Proceedings, 260(June 2014).

    Google Scholar 

  52. Hahn, J., Ludwig, B., & Wolff, C. (2015). Augmented reality-based training of the PCB assembly process. ACM International Conference Proceeding Series, 30-Novembe(Mum), 395–399. https://doi.org/10.1145/2836041.2841215

  53. Hanson, R., Falkenström, W., & Miettinen, M. (2017). Augmented reality as a means of conveying picking information in kit preparation for mixed-model assembly. Computers & Industrial Engineering, 113(August), 570–575. https://doi.org/10.1016/j.cie.2017.09.048

    Article  Google Scholar 

  54. Haringer, M., & Regenbrecht, H. T. (2002). A pragmatic approach to augmented reality authoring. In Proceedings – International symposium on mixed and augmented reality, ISMAR 2002, pp. 237–246. https://doi.org/10.1109/ISMAR.2002.1115093

  55. Haug, A. (2015). Work instruction quality in industrial management. International Journal of Industrial Ergonomics, 50, 170–177. https://doi.org/10.1016/j.ergon.2015.09.015

    Article  Google Scholar 

  56. Henderson, S., & Feiner, S. (2011). Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Transactions on Visualization and Computer Graphics, 17(10), 1355–1368. https://doi.org/10.1109/TVCG.2010.245

    Article  Google Scholar 

  57. Henderson, S. J., & Feiner, S. (2009). Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret. In Science and technology proceedings – IEEE 2009 international symposium on mixed and augmented reality, ISMAR 2009, pp. 135–144. https://doi.org/10.1109/ISMAR.2009.5336486

  58. Hodaie, Z., Haladjian, J., & Bruegge, B. (2019). ISAR: An authoring system for interactive tabletops. In ISS 2019 – Proceedings of the 2019 ACM international conference on interactive surfaces and spaces, pp. 355–360. https://doi.org/10.1145/3343055.3360751

  59. Holm, M., Danielsson, O., Syberfeldt, A., Moore, P., & Wang, L. (2017). Adaptive instructions to novice shop-floor operators using Augmented Reality. Journal of Industrial and Production Engineering, 34(5), 362–374. https://doi.org/10.1080/21681015.2017.1320592

    Article  Google Scholar 

  60. Irawati, S., Green, S., Billinghurst, M., Duenser, A., & Ko, H. (2006). An evaluation of an augmented reality multimodal interface using speech and paddle gestures. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4282 LNCS(January), 272–283. https://doi.org/10.1007/11941354_28

  61. Jasche, F., Hofmann, S., & Ludwig, T. (2021, May 6). Comparison of diferent types of augmented reality visualizations for instructions. In Conference on human factors in computing systems – Proceedings. https://doi.org/10.1145/3411764.3445724

  62. Jo, G., Oh, K., Ha, I., Lee, K., Hong, M., Neumann, U., & You, S. (2014, July). A unified framework for augmented reality and knowledge-based systems in a unified framework for augmented reality and knowledge-based systems in maintaining aircraft.

    Google Scholar 

  63. Kim, K., Billinghurst, M., Bruder, G., Duh, H. B. L., & Welch, G. F. (2018). Revisiting trends in augmented reality research: A review of the 2nd Decade of ISMAR (2008-2017). IEEE Transactions on Visualization and Computer Graphics, 24(11), 2947–2962. https://doi.org/10.1109/TVCG.2018.2868591

    Article  Google Scholar 

  64. Knöpfle, C., Weidenhausen, J., Chauvigné, L., & Stock, I. (2005). Template based authoring for AR based service scenarios. In Proceedings – IEEE virtual reality, pp. 237–240. https://doi.org/10.1109/vr.2005.1492779

  65. Koumaditis, K., Venckute, S., Jensen, F. S., & Chinello, F. (2019). Immersive training: Outcomes from small scale AR/VR pilot-studies. In 26th IEEE conference on virtual reality and 3D user interfaces, VR 2019 – Proceedings, 2019-Janua(March 2020), pp. 1894–1898. https://doi.org/10.1109/VR44988.2019.9044162

  66. Lai, Z. H., Tao, W., Leu, M. C., & Yin, Z. (2020). Smart augmented reality instructional system for mechanical assembly towards worker-centered intelligent manufacturing. Journal of Manufacturing Systems, 55(July 2019), 69–81. https://doi.org/10.1016/j.jmsy.2020.02.010

    Article  Google Scholar 

  67. Lavric, T., Bricard, E., Preda, M., & Zaharia, T. (2021a). An industry-adapted AR training method for manual assembly operations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13095 LNCS, 282–304. https://doi.org/10.1007/978-3-030-90963-5_22

  68. Lavric, T., Bricard, E., Preda, M., & Zaharia, T. (2021b). Exploring low-cost visual assets for conveying assembly instructions in AR. In 2021 international conference on INnovations in Intelligent SysTems and Applications, INISTA 2021 – Proceedings. https://doi.org/10.1109/INISTA52262.2021.9548570

  69. Lee, G. A., & Hoff, W. (2020). Enhancing first-person view task instruction videos with augmented reality cues (pp. 666–676). https://doi.org/10.1109/ISMAR50242.2020.00078

  70. Lee, G. A., & Kim, G. J. (2009). Immersive authoring of Tangible Augmented Reality content: A user study. Journal of Visual Languages and Computing, 20(2), 61–79. https://doi.org/10.1016/j.jvlc.2008.07.001

    Article  Google Scholar 

  71. Lee, G. A., Kim, G. J., & Billinghurst, M. (2005). Immersive authoring: What you experience is what you get (WYXIWYG). Communications of the ACM, 48(7), 76–81. http://portal.acm.org/citation.cfm?doid=1070838.1070840

  72. Lee, G., Ahn, S., Hoff, W., & Billinghurst, M. (2019). AR Tips: Augmented first-person view task instruction videos. In 2019 IEEE international symposium on mixed and augmented reality adjunct (ISMAR-Adjunct), pp. 34–36. https://doi.org/10.1109/ISMAR-Adjunct.2019.00024

  73. Li, D., Mattsson, S., Salunkhe, O., Fast-Berglund, A., Skoogh, A., & Broberg, J. (2018). Effects of information content in work instructions for operator performance. Procedia Manufacturing, 25, 628–635. https://doi.org/10.1016/j.promfg.2018.06.092

    Article  Google Scholar 

  74. Li, W., Agrawala, M., & Salesin, D. (2004). Interactive image-based exploded view diagrams. In Proceedings – Graphics interface, June 2014, pp. 203–212.

    Google Scholar 

  75. Lindberg, C. F., Tan, S., Yan, J., & Starfelt, F. (2015). Key performance indicators improve industrial performance. Energy Procedia, 75, 1785–1790. https://doi.org/10.1016/J.EGYPRO.2015.07.474

    Article  Google Scholar 

  76. Lines, B. C., Sullivan, K. T., Smithwick, J. B., & Mischung, J. (2015). Overcoming resistance to change in engineering and construction: Change management factors for owner organizations. International Journal of Project Management, 33(5), 1170–1179. https://doi.org/10.1016/j.ijproman.2015.01.008

    Article  Google Scholar 

  77. Loch, F., Quint, F., & Brishtel, I. (2016). Comparing video and augmented reality assistance in manual assembly. In 2016 12th international conference on intelligent environments (IE), pp. 147–150. https://doi.org/10.1109/IE.2016.31

  78. Lorenz, M., Knopp, S., & Klimant, P. (2018). Industrial augmented reality: Requirements for an augmented reality maintenance worker support system. In Adjunct proceedings – 2018 IEEE international symposium on mixed and augmented reality, ISMAR-Adjunct 2018, pp. 151–153. https://doi.org/10.1109/ISMAR-Adjunct.2018.00055

  79. Markouzis, D., & Fessakis, G. (2015). Interactive storytelling and mobile augmented reality applications for learning and entertainment – A rapid prototyping perspective. In Proceedings of 2015 international conference on interactive mobile communication technologies and learning, IMCL 2015, pp. 4–8. https://doi.org/10.1109/IMCTL.2015.7359544

  80. Marr, B. (2018). The amazing ways honeywell is using virtual and augmented reality to transfer skills to millennials. https://www.forbes.com/sites/bernardmarr/2018/03/07/the-amazing-ways-honeywell-is-using-virtual-and-augmented-reality-to-transfer-skills-to-millennials/?sh=2eb075c5536a

  81. Martinetti, A., Marques, H. C., Singh, S., & van Dongen, L. (2019). Reflections on the limited pervasiveness of augmented reality in industrial sectors. Applied Sciences, 9(16), 3382. https://doi.org/10.3390/app9163382

    Article  Google Scholar 

  82. Masood, T., & Egger, J. (2019). Augmented reality in support of Industry 4.0 – Implementation challenges and success factors. Robotics and Computer-Integrated Manufacturing, 58(March), 181–195. https://doi.org/10.1016/j.rcim.2019.02.003

    Article  Google Scholar 

  83. Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In The Cambridge handbook of multimedia learning, second edition, pp. 279–315. https://doi.org/10.1017/CBO9781139547369.015

  84. Mengoni, M., Ceccacci, S., Generosi, A., & Leopardi, A. (2018). Spatial augmented reality: An application for human work in smart manufacturing environment. Procedia Manufacturing, 17, 476–483. https://doi.org/10.1016/j.promfg.2018.10.072

    Article  Google Scholar 

  85. Merino, L., Schwarzl, M., Kraus, M., Sedlmair, M., Schmalstieg, D., & Weiskopf, D. (2020). Evaluating mixed and augmented reality: A systematic literature review (2009–2019). https://doi.org/10.1109/ISMAR50242.2020.00069

  86. Microsoft HoloLens 2|AR Headset. (2021). https://www.insight.com/en_US/shop/partner/microsoft/hardware/hololens.html

  87. Microsoft Mixed Reality/AR Guides|Microsoft Dynamics 365. (2019). https://dynamics.microsoft.com/en-us/mixed-reality/guides/

  88. Microsoft MRTK v2.4.0. (2020). https://github.com/microsoft/MixedRealityToolkit-Unity/releases/tag/v2.4.0

  89. Miqueo, A., Torralba, M., & Yagüe-Fabra, J. A. (2020). Lean manual assembly 4.0: A systematic review. Applied Sciences (Switzerland), 10(23), 1–37. https://doi.org/10.3390/app10238555

    Article  Google Scholar 

  90. Mixed Reality direct manipulation with hands|Microsoft Docs. (2020). https://docs.microsoft.com/en-us/windows/mixed-reality/design/direct-manipulation#3d-object-manipulation

  91. Mixed Reality instinctual interactions|Microsoft Docs. (2020). https://docs.microsoft.com/en-us/windows/mixed-reality/design/interaction-fundamentals

  92. Moghaddam, M., Wilson, N. C., Modestino, A. S., Jona, K., & Marsella, S. C. (2021). Exploring augmented reality for worker assistance versus training. Advanced Engineering Informatics, 50(April), 101410. https://doi.org/10.1016/j.aei.2021.101410

    Article  Google Scholar 

  93. Mohr, P., Kerbl, B., Donoser, M., Schmalstieg, D., & Kalkofen, D. (2015). Retargeting technical documentation to augmented reality. In Proceedings of the 33rd annual ACM conference on human factors in computing systems – CHI ’15, 2015-April, pp. 3337–3346. https://doi.org/10.1145/2702123.2702490

  94. Mohr, P., Mandl, D., Tatzgern, M., Veas, E., Schmalstieg, D., & Kalkofen, D. (2017). Retargeting video tutorials showing tools with surface contact to augmented reality. In Conference on human factors in computing systems – Proceedings, 2017-May, pp. 6547–6558. https://doi.org/10.1145/3025453.3025688

  95. Mossel, A., & Venditti, B. (2013). 3DTouch and HOMER-S: Intuitive manipulation techniques for one-handed handheld augmented reality.

    Google Scholar 

  96. Mota, R. C., Roberto, R. A., & Teichrieb, V. (2015). [POSTER] Authoring tools in augmented reality: An analysis and classification of content design tools. In 2015 IEEE international symposium on mixed and augmented reality, October 2017, pp. 164–167. https://doi.org/10.1109/ISMAR.2015.47

  97. Moura, G. D. S., Pessoa, S. A., Lima, J. P. S. D. M., Teichrieb, V., & Kelner, J. (2011). RPR-SORS: An authoring toolkit for photorealistic AR. In Proceedings – 2011 13th symposium on virtual reality, SVR 2011, pp. 178–187. https://doi.org/10.1109/SVR.2011.14

  98. Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2020). A framework for automatic generation of augmented reality maintenance & repair instructions based on convolutional Neural networks. Procedia CIRP, 93, 977–982. https://doi.org/10.1016/j.procir.2020.04.130

    Article  Google Scholar 

  99. Mourtzis, D., Vlachou, A., & Zogopoulos, V. (2017). Cloud-based augmented reality remote maintenance through shop-floor monitoring: A product-service system approach. Journal of Manufacturing Science and Engineering. Transactions of the ASME, 139(6). https://doi.org/10.1115/1.4035721/366621

  100. Murithi, J., & Lin, C. (2020). Markerless cooperative augmented reality-based smart manufacturing double-check system: Case of safe PCBA inspection following automatic optical inspection. Robotics and Computer-Integrated Manufacturing, 64(February), 101957. https://doi.org/10.1016/j.rcim.2020.101957

    Article  Google Scholar 

  101. Nassani, A., Bai, H., Lee, G., & Billinghurst, M. (2015). Tag it! AR annotation using wearable sensors. In SIGGRAPH Asia 2015 Mobile graphics and interactive applications, SA 2015. https://doi.org/10.1145/2818427.2818438

  102. Nebeling, M., & Speicher, M. (2018). The trouble with augmented reality/Virtual reality authoring tools. In 2018 IEEE international symposium on mixed and augmented reality adjunct (ISMAR-Adjunct), pp. 333–337. https://doi.org/10.1109/ISMAR-Adjunct.2018.00098

  103. Nee, A. Y. C., Ong, S. K., Chryssolouris, G., & Mourtzis, D. (2012). Augmented reality applications in design and manufacturing. CIRP Annals, 61(2), 657–679. https://doi.org/10.1016/j.cirp.2012.05.010

    Article  Google Scholar 

  104. Nilsson, S., & Johansson, B. (2007). Fun and usable: Augmented Reality instructions in a hospital setting. In Australasian computer-human interaction conference, OZCHI’07, pp. 123–130.

    Google Scholar 

  105. O’Donnell, R. (2018). How Mercedes-Benz uses augmented reality to train employees of all types|HR Dive. https://www.hrdive.com/news/how-mercedes-benz-uses-augmented-reality-to-train-employees-of-all-types/530425/

  106. Ong, S. K., Yuan, M. L., & Nee, A. Y. C. (2008). Augmented reality applications in manufacturing: A survey. International Journal of Production Research, 46(10), 2707–2742. https://doi.org/10.1080/00207540601064773

    Article  MATH  Google Scholar 

  107. Ong, S. K., & Zhu, J. (2013). CIRP Annals – Manufacturing Technology A novel maintenance system for equipment serviceability improvement. CIRP Annals - Manufacturing Technology, 62(1), 39–42. https://doi.org/10.1016/j.cirp.2013.03.091

    Article  Google Scholar 

  108. Ong, X. W. S. K., & Nee, A. Y. C. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1–22. https://doi.org/10.1007/s40436-015-0131-4

    Article  Google Scholar 

  109. Palladino, T. (2017). Porsche adopts Atheer’s AR platform to connect mechanics with remote experts|Next Reality. https://next.reality.news/news/porsche-adopts-atheers-ar-platform-connect-mechanics-with-remote-experts-0181255/

  110. Palmarini, R., Erkoyuncu, J. A., Roy, R., & Torabmostaedi, H. (2018). A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing, 49(March 2017), 215–228. https://doi.org/10.1016/j.rcim.2017.06.002

    Article  Google Scholar 

  111. Park, J., Kim, S. S., Park, H., & Woo, W. (2016). Dreamhouse: NUI-based photo-realistic AR authoring system for interior design. In ACM international conference proceeding series, 2527-February-2016. https://doi.org/10.1145/2875194.2875221

  112. Pilati, F., Faccio, M., Gamberi, M., & Regattieri, A. (2020). Learning manual assembly through real-time motion capture for operator training with augmented reality. Procedia Manufacturing, 45, 189–195. https://doi.org/10.1016/j.promfg.2020.04.093

    Article  Google Scholar 

  113. Polvi, J., Taketomi, T., Moteki, A., Yoshitake, T., Fukuoka, T., Yamamoto, G., Sandor, C., & Kato, H. (2018). Handheld guides in inspection tasks: Augmented reality versus picture. IEEE Transactions on Visualization and Computer Graphics, 24(7), 2118–2128. https://doi.org/10.1109/TVCG.2017.2709746

    Article  Google Scholar 

  114. Raczynski, A., & Gussmann, P. (2004). Services and training through augmented reality. In IEE conference publication, pp. 263–271.

    Google Scholar 

  115. Radkowski, R., Herrema, J., & Oliver, J. (2015). Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human Computer Interaction, 31(5), 337–349. https://doi.org/10.1080/10447318.2014.994194

    Article  Google Scholar 

  116. Reiners, D., Stricker, D., Klinker, G., & Stefan, M. (1999). Augmented reality for construction tasks: Doorlock assembly. In Augmented reality, November 1999, pp. 51–66. https://doi.org/10.1201/9781439863992-10

  117. Robertson, C. M., Maclntyre, B., & Walker, B. N. (2008). An evaluation of graphical context when the graphics are outside of the task area. In Proceedings – 7th IEEE international symposium on mixed and augmented reality 2008, ISMAR 2008, pp. 73–76. https://doi.org/10.1109/ISMAR.2008.4637328

  118. Rolland, J. P., Holloway, R. L., & Fuchs, H. (1995). Comparison of optical and video see-through, head-mounted displays. Telemanipulator and Telepresence Technologies, 2351, 293–307. https://doi.org/10.1117/12.197322

    Article  Google Scholar 

  119. Rumiński, D., & Walczak, K. (2013). Creation of interactive AR content on mobile devices. Lecture Notes in Business Information Processing, 160, 258–269. https://doi.org/10.1007/978-3-642-41687-3_24

    Article  Google Scholar 

  120. Sahu, C. K., Young, C., & Rai, R. (2021). Artificial Intelligence (AI) in Augmented Reality (AR)-assisted manufacturing applications: A review. International Journal of Production Research, 59(16), 4903–4959. https://doi.org/10.1080/00207543.2020.1859636

    Article  Google Scholar 

  121. Sanna, A., Manuri, F., Lamberti, F., Paravati, G., & Pezzolla, P. (2015). Using handheld devices to sup port augmented reality-based maintenance and assembly tasks. In 2015 IEEE international conference on consumer electronics, ICCE 2015, pp. 178–179. https://doi.org/10.1109/ICCE.2015.7066370

  122. Sato, H., & Cohen, M. (2010). Using motion capture for real-time augmented reality scenes. In Proceedings of the 13th international conference on …, December 2010, pp. 58–61. http://dl.acm.org/citation.cfm?id=1994503

  123. Schwald, B., & de Laval, B. D. (2003). An augmented reality system for training and assistance to maintenance in the industrial context. In International conference in central europe on computer graphics, visualization and computer vision (WSCG), pp. 425–432.

    Google Scholar 

  124. Schwald, B., Figue, J., Chauvineau, E., Vu-Hong, F., Robert, A., Arbolino, M., Schnaider, M., de Laval, B., Dumas de Rauly, F., Anez, F. G., Baldo, O., & Santos, J. (2001). STARMATE: Using augmented reality technology for computer guided maintenance of complex mechanical elements. In EBusiness and EWork conference, pp. 196–202. https://www.researchgate.net/publication/237729326_STARMATE_Using_Augmented_Reality_technology_for_computer_guided_maintenance_of_complex_mechanical_elements

  125. Schwerdtfeger, B., Reif, R., Günthner, W. A., & Klinker, G. (2011). Pick-by-vision: There is something to pick at the end of the augmented tunnel. Virtual Reality, 15(2–3), 213–223. https://doi.org/10.1007/S10055-011-0187-9

    Article  Google Scholar 

  126. Scurati, G. W., Gattullo, M., Fiorentino, M., Ferrise, F., Bordegoni, M., & Uva, A. E. (2018). Converting maintenance actions into standard symbols for Augmented Reality applications in Industry 4.0. Computers in Industry, 98, 68–79. https://doi.org/10.1016/j.compind.2018.02.001

    Article  Google Scholar 

  127. Shao, T., Li, W., Zhou, K., Xu, W., Guo, B., & Mitra, N. J. (2013). Interpreting concept sketches. ACM Transactions on Graphics (TOG), 32(4). https://doi.org/10.1145/2461912.2462003

  128. Siew, C. Y., Ong, S. K., & Nee, A. Y. C. (2019). A practical augmented reality-assisted maintenance system framework for adaptive user support. Robotics and Computer-Integrated Manufacturing, 59, 115–129. https://doi.org/10.1016/j.rcim.2019.03.010

    Article  Google Scholar 

  129. Smith, E., McRae, K., Semple, G., Welsh, H., Evans, D., & Blackwell, P. (2021). Enhancing vocational training in the post-COVID era through mobile mixed reality. Sustainability, 13(11), 6144. https://doi.org/10.3390/SU13116144

  130. Smith, E., Semple, G., Evans, D., McRae, K., & Blackwell, P. (2020). Augmented instructions: Analysis of performance and efficiency of assembly tasks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12191 LNCS, 166–177. https://doi.org/10.1007/978-3-030-49698-2_12

  131. SPA, E. I., AE, E. T., ZOO, H. S. P., & KUENSTLICHE, D. F. F. (2014). INTERACT – Interactive manual assembly operations for the human-centered workplaces of the future. 611007. http://www.interact-fp7.eu/wp-content/uploads/2015/04/INTERACT-D1.2.1.pdf

  132. Stock, I., Weber, M., & Steinmeier, E. (2005). Metadata based authoring for technical documentation. In Proceedings of the 23rd annual international conference on design of communication documenting & designing for pervasive information – SIGDOC ’05. https://doi.org/10.1145/1085313

  133. Swan, J. E., & Gabbard, J. L. (2005). Survey of user – Based experimentation in augmented reality. In Proceedings of 1st international conference on virtual reality, pp. 1–9. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3957&rep=rep1&type=pdf

  134. Syberfeldt, A., Danielsson, O., Holm, M., & Wang, L. (2015). Visual assembling guidance using augmented reality. Procedia Manufacturing, 1, 98–109. https://doi.org/10.1016/j.promfg.2015.09.068

    Article  Google Scholar 

  135. Tainaka, K. (2020). Guideline and tool for designing an assembly task support system using augmented reality (pp. 654–665). https://doi.org/10.1109/ISMAR50242.2020.00077

  136. Tang, A., Owen, C., Biocca, F., & Mou, W. (2003). Comparative effectiveness of augmented reality in object assembly. In Proceedings of the conference on human factors in computing systems – CHI ’03. https://doi.org/10.1145/642611

  137. Tsihrintzis, G. A., Damiani, E., Virvou, M., Howlett, R. J., & Jain, L. C. (2010). Intelligent interactive multimedia systems and services. Smart Innovation, Systems and Technologies, 6. https://doi.org/10.1007/978-3-642-14619-0

  138. Unity 2019.4.10. (2019). https://unity3d.com/unity/whats-new/2019.4.10

  139. Urbas, U., Vrabič, R., & Vukašinović, N. (2019). Displaying product manufacturing information in augmented reality for inspection. Procedia CIRP, 81, 832–837. https://doi.org/10.1016/J.PROCIR.2019.03.208

    Article  Google Scholar 

  140. Uva, A. E., Gattullo, M., Manghisi, V. M., Spagnulo, D., Cascella, G. L., & Fiorentino, M. (2018). Evaluating the effectiveness of spatial augmented reality in smart manufacturing: A solution for manual working stations. International Journal of Advanced Manufacturing Technology, 94(1–4), 509–521. https://doi.org/10.1007/s00170-017-0846-4

    Article  Google Scholar 

  141. van Marrewijk, A. (2018). Digging for change: Change and resistance in interorganizational projects in the utilities sector. Project Management Journal, 49(3), 34–45. https://doi.org/10.1177/8756972818770590

    Article  Google Scholar 

  142. Vanneste, P., Huang, Y., Park, J. Y., Cornillie, F., Decloedt, B., & Van den Noortgate, W. (2020). Cognitive support for assembly operations by means of augmented reality: an exploratory study. International Journal of Human Computer Studies, 143(October 2019), 102480. https://doi.org/10.1016/j.ijhcs.2020.102480

    Article  Google Scholar 

  143. Vuforia Expert Capture| PTC. (2019). https://www.ptc.com/en/products/vuforia/vuforia-expert-capture

  144. Wang, T., Qian, X., He, F., Hu, X., Huo, K., Cao, Y., & Ramani, K. (2020). CAPturAR: An augmented reality tool for authoring human-involved context-aware applications. In UIST 2020 – Proceedings of the 33rd annual ACM symposium on user interface software and technology, pp. 328–341. https://doi.org/10.1145/3379337.3415815

  145. Wang, X., Ong, S. K., & Nee, A. Y. C. (2015). Real-virtual interaction in AR assembly simulation based on component contact handling strategy. Assembly Automation, 35(4), 376–394. https://doi.org/10.1108/AA-02-2015-012

    Article  Google Scholar 

  146. Wang, X., Ong, S. K., & Nee, A. Y. C. (2016). Advanced Engineering Informatics Multi-modal augmented-reality assembly guidance based on bare-hand interface. Advanced Engineering Informatics, 30(3), 406–421. https://doi.org/10.1016/j.aei.2016.05.004

    Article  Google Scholar 

  147. Wang, Y., Zhang, S., Wan, B., He, W., & Bai, X. (2018). Point cloud and visual feature-based tracking method for an augmented reality-aided mechanical assembly system. International Journal of Advanced Manufacturing Technology, 99(9–12), 2341–2352. https://doi.org/10.1007/s00170-018-2575-8

    Article  Google Scholar 

  148. Webel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M., & Preusche, C. (2013). An augmented reality training platform for assembly and maintenance skills. Robotics and Autonomous Systems, 61(4), 398–403. https://doi.org/10.1016/j.robot.2012.09.013

    Article  Google Scholar 

  149. Werrlich, S., Daniel, A., Ginger, A., Nguyen, P. A., & Notni, G. (2019). Comparing HMD-based and paper-based training. In Proceedings of the 2018 IEEE international symposium on mixed and augmented reality, ISMAR 2018, pp. 134–142. https://doi.org/10.1109/ISMAR.2018.00046

  150. Westerfield, G., Mitrovic, A., & Billinghurst, M. (2015). Intelligent augmented reality training for motherboard assembly. International Journal of Artificial Intelligence in Education, 25(1), 157–172. https://doi.org/10.1007/s40593-014-0032-x

    Article  Google Scholar 

  151. Yamaguchi, M., Mori, S., Mohr, P., Tatzgern, M., Stanescu, A., Saito, H., & Kalkofen, D. (2020). Video-annotated augmented reality assembly tutorials. In UIST 2020 – Proceedings of the 33rd annual ACM symposium on user interface software and technology, pp. 1010–1022. https://doi.org/10.1145/3379337.3415819

  152. Yang, Y., Shim, J., Chae, S., & Han, T. D. (2016). Mobile augmented reality authoring tool. In Proceedings – 2016 IEEE 10th international conference on semantic computing, ICSC 2016, pp. 358–361. https://doi.org/10.1109/ICSC.2016.42

  153. Yu, J., Jeon, J. U., Park, G., Kim, H. I., & Woo, W. (2016). A unified framework for remote collaboration using interactive AR authoring and hands tracking. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9749, 132–141. https://doi.org/10.1007/978-3-319-39862-4_13

    Article  Google Scholar 

  154. Zauner, J., Haller, M., Brandl, A., & Hartman, W. (2003). Authoring of a mixed reality assembly instructor for hierarchical structures. In Proceedings – 2nd IEEE and ACM international symposium on mixed and augmented reality, ISMAR 2003, pp. 237–246. https://doi.org/10.1109/ISMAR.2003.1240707

  155. Zhao, J., Sensibaugh, T., Bodenheimer, B., McNamara, T. P., Nazareth, A., Newcombe, N., Minear, M., & Klippel, A. (2020). Desktop versus immersive virtual environments: Effects on spatial learning. Spatial Cognition and Computation, 20(4), 328–363. https://doi.org/10.1080/13875868.2020.1817925

    Article  Google Scholar 

  156. Zhu, J., Ong, S. K., & Nee, A. Y. C. (2013). An authorable context-aware augmented reality system to assist the maintenance technicians. International Journal of Advanced Manufacturing Technology, 66(9–12), 1699–1714. https://doi.org/10.1007/s00170-012-4451-2

    Article  Google Scholar 

  157. Zhu, J., Ong, S. K., & Nee, A. Y. C. (2014). A context-aware augmented reality assisted maintenance system. International Journal of Computer Integrated, 28(2), 213–225. https://doi.org/10.1080/0951192X.2013.874589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Preda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Preda, M., Lavric, T. (2023). Augmented Reality Training in Manufacturing Sectors. In: Crespi, N., Drobot, A.T., Minerva, R. (eds) The Digital Twin. Springer, Cham. https://doi.org/10.1007/978-3-031-21343-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21343-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21342-7

  • Online ISBN: 978-3-031-21343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics