Skip to main content

Hybrid Twin: An Intimate Alliance of Knowledge and Data

  • Chapter
  • First Online:
The Digital Twin

Abstract

Models based on physics were the major protagonists of the Simulation Based Engineering Sciences during the last century. However, engineering is focusing the more and more on performances. Thus, the new engineering must conciliate two usually opposite requirements: fast and accurate. With the irruption of data, and the technologies for efficiently manipulating it, in particular artificial intelligence and machine learning, data serves to enrich physics-based models, and the last allows data becoming smarter. When combined, physics-based and data-driven models, within the concept of Hybrid Twin, real-time predictions are possible while ensuring the highest accuracy. This chapter introduces the Hybrid Twin concept, with the associated technologies, applications and business model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chinesta, F., Keunings, R., & Leygue, A. (2014). The proper generalized decomposition for advanced numerical simulations. A primer (Springerbriefs). Springer. https://www.springer.com/gp/book/9783319028644

    Book  MATH  Google Scholar 

  2. Chinesta, F., Huerta, A., Rozza, G., & Willcox, K. (2015). Chapitre dans l’Encyclopedia of Computational Mechanics. In E. Stein, R. de Borst, & T. Hughes (Eds.), Model order reduction (2nd ed.). Wiley. https://doi.org/10.1002/9781119176817.ecm2110

    Chapter  Google Scholar 

  3. Borzacchiello, D., Aguado, J. V., & Chinesta, F. (2019). Non-intrusive sparse subspace learning for parametrized problems. Archives of Computational Methods in Engineering, 26(2), 303–326. https://doi.org/10.1007/s11831-017-9241-4

    Article  MathSciNet  Google Scholar 

  4. Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A., & Huerta, A. (2013). Parametric PGD based computational vademecum for efficient design, optimization and control. Archives of Computational Methods in Engineering, 20(1), 31–59. 10.1007/s11831-013-9080-x.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chinesta, F., Cueto, E., Abisset, E., Duval, J. L., & El Khaldi, F. (2020). Virtual, Digital and Hybrid Twins. A new paradigm in data-based engineering and engineered data. Archives of Computational Methods in Engineering, 27(1), 105–134. https://doi.org/10.1007/s11831-018-9301-4

    Article  MathSciNet  Google Scholar 

  6. Lopez, E., Gonzalez, D., Aguado, J., Abisset-Chavanne, E., Cueto, E., Binetruy, C., & Chinesta, F. (2018). A manifold learning approach for integrated computational materials engineering. Archives of Computational Methods in Engineering, 25(1), 59–68. https://doi.org/10.1007/s11831-016-9172-5

    Article  MathSciNet  MATH  Google Scholar 

  7. González, D., Chinesta, F., & Cueto, E. (2019). Thermodynamically consistent data-driven computational mechanics. Continuum Mechanics and Thermodynamics, 31, 239–253. https://doi.org/10.1007/s00161-018-0677-z

    Article  MathSciNet  Google Scholar 

  8. Ibanez, R., Abisset-Chavanne, E., Aguado, J. V., Gonzalez, D., Cueto, E., Chinesta, F. (2018). A manifold-based methodological approach to data-driven computational elasticity and inelasticity. Archives of Computational Methods in Engineering, 25(1), 47–57. https://doi.org/10.1007/s11831-016-9197-9

  9. Quaranta, G., Duval, J. L., Lopez, E., Abisset-Chavanne, E., Huerta, A., & Chinesta, F. (2019). Structural health monitoring by combining machine learning and dimensionality reduction techniques. Revista Internacional de Metodos Numericos, 35(1). https://www.scipedia.com/public/Quaranta_et_al_2018a

  10. Ibanez, R., Abisset-Chavanne, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J. L., Chinesta, F. (2018). A multi-dimensional data-driven sparse identification technique: The sparse Proper Generalized Decomposition. Complexity, Article ID 5608286. https://doi.org/10.1155/2018/5608286

  11. Moya, B., Gonzalez, D., Alfaro, I., Chinesta, F., & Cueto, E. (2019). Learning slosh dynamics by means of data. Computational Mechanics, 64, 511–523. https://doi.org/10.1007/s00466-019-01705-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Argerich Martín, C., Ibáñez Pinillo, R., Barasinski, A., & Chinesta, F. (2019). Code2Vect: An efficient heterogenous data classifier and nonlinear regression technique. CRAS Mécanique, 347(11), 754–761. https://doi.org/10.1016/j.crme.2019.11.002

    Article  Google Scholar 

  13. Montáns, F. J., Chinesta, F., Gómez-Bombarelli, R., & Kutz, J. N. (2019). Data-driven modeling and learning in science and engineering. CRAS Mécanique, 347(11), 845–855. https://doi.org/10.1016/j.crme.2019.11.009

    Article  Google Scholar 

  14. Reille, A., Hascoet, N., Ghnatios, C., Ammar, A., Cueto, E., Duval, J. L., Chinesta, F., & Keunings, R. (2019). Incremental Dynamic Mode Decomposition: A reduced-model learner operating at the low-data limit. CRAS Mécanique, 347(11), 780–792. https://doi.org/10.1016/j.crme.2019.11.003

    Article  Google Scholar 

  15. Gonzalez, D., Chinesta, F., Cueto, E. (2019). Learning corrections for hyperelastic models from data. Frontiers in Materials - Section Computational Materials Science, 6(14).

    Google Scholar 

  16. Ibanez, R., Abisset-Chavanne, E., Gonzalez, D., Duval, J. L., Cueto, E., Chinesta, F. (2019). Hybrid constitutive modeling: Data-driven learning of corrections to plasticity models. International Journal of Material Forming, 12, 717–725.

    Google Scholar 

  17. Yun, M., Argerich, C., Gilormini, P., Chinesta, F., Advani, S. (2020). Predicting data-driven fiber-fiber interactions in semi-concentrated flowing suspensions. Entropy, 22(30).

    Google Scholar 

  18. Frahi, T., Chinesta, F., Falco, A., Badias, A., Cueto, E., Choi, H. Y., Han, M., & Duval, J.-L. (2021). Empowering advanced driver-assistance systems from topological data analysis. Mathematics, 9(6), 634.

    Article  Google Scholar 

  19. Moya, B., Badías, A., Alfaro, I., Chinesta, F., & Cueto, E. (2020). Digital twins that learn and correct themselves. International Journal for Numerical Methods in Engineering. Accepted for publication.

    Google Scholar 

  20. Ibañez, R., Abisset-Chavanne, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J. L., & Chinesta, F. (2018). A multi-dimensional data-driven sparse identification technique: the sparse Proper Generalized Decomposition. Complexity. Paper 5608286.

    Google Scholar 

  21. Sancarlos, A., Cameron, M., Le Peuvedic, J.-M., Groulier, J., Duval, J.-L., Cueto, E., & Chinesta, F. (2021). Learning stable reduced-order models for hybrid twins. Data-Centric Engineering. Data-Centric Engineering, 2:e10, 2021.

    Google Scholar 

  22. Sancarlos, A., Cameron, M., Abel, A., Cueto, E., Duval, J.-L., & Chinesta, F. (2021). From ROM of electrochemistry to AI-based battery digital and hybrid twin. Archives of Computational Methods in Engineering, 28, 979–1015.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chinesta, F., El Khaldi, F., Cueto, E. (2023). Hybrid Twin: An Intimate Alliance of Knowledge and Data. In: Crespi, N., Drobot, A.T., Minerva, R. (eds) The Digital Twin. Springer, Cham. https://doi.org/10.1007/978-3-031-21343-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21343-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21342-7

  • Online ISBN: 978-3-031-21343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics