Skip to main content

Resource Efficient Federated Deep Learning for IoT Security Monitoring

  • Conference paper
  • First Online:
Attacks and Defenses for the Internet-of-Things (ADIoT 2022)

Abstract

Federated Learning (FL) uses a distributed Machine Learning (ML) concept to build a global model using multiple local models trained on distributed edge devices. A disadvantage of the FL paradigm is the requirement of many communication rounds before model convergence. As a result, there is a challenge for running on-device FL with resource-hungry algorithms such as Deep Neural Network (DNN), especially in the resource-constrained Internet of Things (IoT) environments for security monitoring. To address this issue, this paper proposes Resource Efficient Federated Deep Learning (REFDL) method. Our method exploits and optimizes Federated Averaging (Fed-Avg) DNN based technique to reduce computational resources consumption for IoT security monitoring. It utilizes pruning and simulated micro-batching in optimizing the Fed-Avg DNN for effective and efficient IoT attacks detection at distributed edge nodes. The performance was evaluated using various realistic IoT and non-IoT benchmark datasets on virtual and testbed environments build with GB-BXBT-2807 edge-computing-like devices. The experimental results show that the proposed method can reduce memory usage by 81% in the simulated environment of virtual workers compared to its benchmark counterpart. In the realistic testbed scenario, it saves 6% memory while reducing execution time by 15% without degrading accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howell, J.: Number of connected iot devices will surge to 125 billion by 2030, ihs markit says (2017). https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says. Accessed 17 Aug 2018

  2. Antonakakis, M., et al.: Understanding the MIRAI botnet. In: 26th USENIX security Symposium USENIX Security 2017, pp. 1093–1110 (2017)

    Google Scholar 

  3. Kotenko, I.V., Saenko, I., Branitskiy, A.: Applying big data processing and machine learning methods for mobile internet of things security monitoring. J. Internet Serv. Inf. Secur. 8(3), 54–63 (2018)

    Google Scholar 

  4. Konečnỳ, J., et al.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  5. Fadlullah, Z.M., et al.: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 19(4), 2432–2455 (2017)

    Article  Google Scholar 

  6. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018)

    Article  Google Scholar 

  7. Li, X., Liu, H., Wang, W., Zheng, Y., Lv, H., Lv, Z.: Big data analysis of the internet of things in the digital twins of smart city based on deep learning. Futur. Gener. Comput. Syst. 128, 167–177 (2022)

    Article  Google Scholar 

  8. Shen, S., Li, R., Zhao, Z., Liu, Q., Liang, J., Zhang, H.: Efficient deep structure learning for resource-limited IoT devices. In: GLOBECOM 2020–2020 IEEE Global Communications Conference. IEEE, pp. 1–6 (2020)

    Google Scholar 

  9. Rock, J., Roth, W., Toth, M., Meissner, P., Pernkopf, F.: Resource-efficient deep neural networks for automotive radar interference mitigation. IEEE J. Select. Topi. Signal Process. 15(4), 927–940 (2021)

    Article  Google Scholar 

  10. Kodali, S., Hansen, P., Mulholland, N., Whatmough, P., Brooks, D., Wei, G.-Y.: Applications of deep neural networks for ultra low power IoT. In: 2017 IEEE International Conference on Computer Design (ICCD), pp. 589–592. IEEE (2017)

    Google Scholar 

  11. Zakariyya, I., Kalutarage, H., Al-Kadri, M.O.: Robust, effective and resource efficient deep neural network for intrusion detection in IoT networks. In: Proceedings of the 8th ACM on Cyber-Physical System Security Workshop, pp. 41–51 (2022)

    Google Scholar 

  12. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2007)

    Google Scholar 

  13. Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., Ilie-Zudor, E.: Chained anomaly detection models for federated learning: an intrusion detection case study. Appl. Sci. 8(12), 2663 (2018)

    Article  Google Scholar 

  14. Imteaj, A., Thakker, U., Wang, S., Li, J., Amini, S.E.:A survey on federated learning for resource-constrained IoT devices. IEEE Internet of Things J. 9, 1–24 (2021)

    Google Scholar 

  15. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, H., Sadeghi, A.-R.: Dïot: A federated self-learning anomaly detection system for IoT. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 756–767. IEEE (2019)

    Google Scholar 

  16. Liu, Y., et al.: Communication-efficient federated learning for anomaly detection in industrial internet of things. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6 IEEE (2020)

    Google Scholar 

  17. Jiang, Y., et al.: Model pruning enables efficient federated learning on edge devices. arXiv preprint arXiv:1909.12326 (2019)

  18. Bonawitz, K., et al.: Towards federated learning at scale: system design. arXiv preprint arXiv:1902.01046 (2019)

  19. Popoola, S.I., Ande, R., Adebisi, B., Gui, G., Hammoudeh, M., Jogunola, O.: Federated deep learning for zero-day botnet attack detection in IoT edge devices. IEEE Internet of Things J. 9 (2021)

    Google Scholar 

  20. Zakariyya, I., Kalutarage, H., Al-Kadri, M.O.: Memory efficient federated deep learning for intrusion detection in IoT networks. In: CEUR Workshop Proceedings (2021)

    Google Scholar 

  21. Chauvin, Y., Rumelhart, D.E.: Backpropagation: Theory, Architectures, and Applications. Psychology Press, Hove (2013)

    Google Scholar 

  22. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H.: State-of-the-art in artificial neural network applications: A survey. Heliyon 4(11), e00938 (2018)

    Article  Google Scholar 

  23. Huang, Y., et al.: Gpipe: efficient training of giant neural networks using pipeline parallelism. Adv. Neural. Inf. Process. Syst. 32, 103–112 (2019)

    Google Scholar 

  24. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)

  25. Meidan, Y., et al.: N-Baiot-network-based detection of IoT botnet attacks using deep autoencoders. IEEE Perv. Comput. 17(3), 12–22 (2018)

    Article  Google Scholar 

  26. Teixeira, M.A., Salman, T., Zolanvari, M., Jain, R., Meskin, N., Samaka, M.: Scada system testbed for cybersecurity research using machine learning approach. Fut. Internet 10(8), 76 (2018)

    Article  Google Scholar 

  27. Pedregosa, F., Gervais, P.: Memory Profiler (python). Python Software Foundation, https://pypi.org/project/memory-profiler/ Accessed 25 Mar 2019

  28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  29. Ryffel, T., et al.: A generic framework for privacy preserving deep learning. arXiv preprint arXiv:1811.04017 (2018)

  30. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-Sklearn. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 97–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_5

    Chapter  Google Scholar 

  31. Bosman, A., Engelbrecht, A., Helbig, M.: Fitness landscape analysis of weight-elimination neural networks. Neural Process. Lett. 48(1), 353–373 (2018)

    Article  Google Scholar 

  32. Ide, H., Kurita, T.: Improvement of learning for CNN with RELU activation by sparse regularization. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2684–691 IEEE (2017)

    Google Scholar 

  33. Zakariyya, I.: Resource efficient federated algorithm with virtual workers (2022) https://github.com/izakariyya/sim-virtual-fed-dnn

  34. Zakariyya, I.:Resource efficient federated algorithm with realistic workers (2022). https://github.com/izakariyya/testbd-fl-iot

  35. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  36. García, V., Mollineda, R.A., Sánchez, J.S.: Theoretical analysis of a performance measure for imbalanced data. In : 2010 20th International Conference on Pattern Recognition, pp. 617–620. IEEE (2010)

    Google Scholar 

  37. Krueger, D., Memisevic, R.: Regularizing RNNs by stabilizing activations. arXiv preprint arXiv:1511.08400 (2015)

  38. Lever, J., Krzywinski, M., Altman, N.: Points of significance: Regularization. Nat. Methods 13(10), 803–805 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Petroleum Technology Development Fund (PTDF), Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idris Zakariyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakariyya, I., Kalutarage, H., Al-Kadri, M.O. (2022). Resource Efficient Federated Deep Learning for IoT Security Monitoring. In: Li, W., Furnell, S., Meng, W. (eds) Attacks and Defenses for the Internet-of-Things. ADIoT 2022. Lecture Notes in Computer Science, vol 13745. Springer, Cham. https://doi.org/10.1007/978-3-031-21311-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21311-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21310-6

  • Online ISBN: 978-3-031-21311-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics