Skip to main content

Non-invasive ICP Monitoring by Auditory System Measurements

  • Chapter
  • First Online:
Signal Processing in Medicine and Biology

Abstract

Intracranial pressure (ICP) monitoring is a standard diagnostic tool for various neurological conditions. Elevated ICP can complicate the pre-existing clinical disorders and can result in headaches, nausea, vomiting, obtundation, seizures, and even death. This monitoring is typically accomplished using intracranially placed pressure transducers, which although reasonably accurate, carry risks of infection and hemorrhage. Another drawback is that invasive techniques necessitate surgical expertise. Hence, an alternative non-invasive ICP monitoring approach would be highly desirable, especially if the method could be a rapid, reliable, simple-to-use, and easily interpretable.

This chapter focuses on non-invasive approaches to ICP monitoring linked to the auditory system. Mechanical coupling between the brain’s subarachnoid space and perilymphatic space of the ear has allowed assessing ICP from auditory measurements. Measurements of tympanic membrane displacement, tympanometry, and otoacoustic emissions are the primary approaches of non-invasive ICP detection that stemmed from the auditory system. We have summed up the evaluation, development, limits, and current state of the art of these methods. More investigations and studies are needed to investigate the use of the non-invasive techniques in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlén, G. (1947). On the connection between cerebrospinal and intralabyrinthine pressure and pressure variations in the inner ear. Acta Oto-Laryngologica, 35(3), 251–257.

    Article  Google Scholar 

  • Arslan, D., Yıldızdaş, D., Horoz, Ö. Ö., Aslan, N., & İncecik, F. (2021). Evaluation of the relationship between NIRS (near-infrared spectroscopy) and optic nerve sheath diameter measurement in children with increased intracranial pressure: A pilot study. Italian Journal of Pediatrics, 47(1).

    Google Scholar 

  • Azad, M. K., Spiewak, A., Sandler, R. H., Manwaring, K., Manwaring, P., & Mansy, H. A. (2018). Monitoring intracranial presWsure using non-invasive brain stethoscope. In SoutheastCon 2018.

    Google Scholar 

  • Balestreri, M., Czosnyka, M., Steiner, L. A., Schmidt, E., Smielewski, P., Matta, B., & Pickard, J. D. (2004). Intracranial hypertension: What additional information can be derived from ICP waveform after head injury? Acta Neurochirurgica, 146(2), 131–141.

    Article  Google Scholar 

  • Bershad, E. M., Urfy, M. Z., Pechacek, A., McGrath, M., Calvillo, E., Horton, N. J., & Voss, S. E. (2014). Intracranial pressure modulates distortion product OTOACOUSTIC emissions. Neurosurgery, 75(4), 445–455.

    Article  Google Scholar 

  • Bratton, S. L., Chestnut, R. M., Ghajar, J., McConnell Hammond, F. F., Harris, O. A., Hartl, R., Manley, G. T., Nemecek, A., Newell, D. W., Rosenthal, G., Schouten, J., Shutter, L., Timmons, S. D., Ullman, J. S., Videtta, W., Wilberger, J. E., & Wright, D. W. (2007). VI. Indications for intracranial pressure monitoring. Journal of Neurotrauma, 24(supplement 1).

    Google Scholar 

  • Bray, R. S., Sherwood, A. M., Halter, J. A., Robertson, C., & Grossman, R. G. (1986). Development of a clinical monitoring system by means of ICP waveform analysis. Intracranial Pressure VI, 260–264.

    Google Scholar 

  • Brimioulle, S., Moraine, J.-J., Norrenberg, D., & Kahn, R. J. (1997). Effects of positioning and exercise on intracranial pressure in a neurosurgical intensive care unit. Physical Therapy, 77(12), 1682–1689.

    Article  Google Scholar 

  • Bruder, N., N’Zoghe, P., Graziani, N., Pelissier, D., Grisoli, F., & François, G. (1995). A comparison of extradural and intraparenchymatous intracranial pressures in head injured patients. Intensive Care Medicine, 21(10), 850–852.

    Article  Google Scholar 

  • Campbell-Bell, C. M., Sharif, S. J., Zhang, T., Bulters, D., Marchbanks, R. J., & Birch, A. A. (2021). A vascular subtraction method for improving the variability of evoked tympanic membrane displacement measurements. Physiological Measurement, 42(2), 025001.

    Article  Google Scholar 

  • Cardim, D., Schmidt, B., Robba, C., Donnelly, J., Puppo, C., Czosnyka, M., & Smielewski, P. (2017). Transcranial Doppler monitoring of intracranial pressure plateau waves. Neurocritical Care, 26(3), 330–338.

    Article  Google Scholar 

  • Cartwright, C., & Igbaseimokumo, U. (2015). Lumbar puncture opening pressure is not a reliable measure of intracranial pressure in children. Journal of Child Neurology, 30(2), 170–173.

    Article  Google Scholar 

  • Centers for Disease Control and Prevention, National Center for Health Statistics: Mortality data on CDC WONDER.

    Google Scholar 

  • Chen, H., Zhou, J., Lin, Y.-Q., Zhou, J.-X., & Yu, R.-G. (2018). Intracranial pressure responsiveness to positive end-expiratory pressure in different respiratory mechanics: A preliminary experimental study in Pigs. BMC Neurology, 18(1).

    Google Scholar 

  • Condo, S. M., Simms, L. A., Mansy, S. H., Azad, M. K., Sandler, R. H., Cosby, J. L., & Mansy, H. A. (2018). Effects of intracranial pressure on tympanometric parameters. In SoutheastCon 2018

    Google Scholar 

  • Cosby, J. L., Dhar, R., & Azad, K. (2019). Effect of body posture on tympanometry peak pressure. In American Speech-Language-Hearing Association (ASHA) Convention.

    Google Scholar 

  • Davids, J. D., Birch, A. A., & Marchbanks, R. J. (2012). 082 non-invasive measurements of intracranial pressure: Can coherent averaging show a tilt-dependent change in the measured spontaneous tympanic membrane displacement (STMD) signal in healthy volunteers? Journal of Neurology, Neurosurgery & Psychiatry, 83(3).

    Google Scholar 

  • Densert, O., Ivarsson, A., & Pedersen, K. (1977). The influence of perilymphatic pressure on the displacement of the tympanic membranew a quantitative study on Human Temporal Bones. Acta Oto-Laryngologica, 84(1–6), 220–226.

    Article  Google Scholar 

  • Dewan, M. C., Rattani, A., Gupta, S., Baticulon, R. E., Hung, Y.-C., Punchak, M., Agrawal, A., Adeleye, A. O., Shrime, M. G., Rubiano, A. M., Rosenfeld, J. V., & Park, K. B. (2019). Estimating the global incidence of traumatic brain injury. Journal of Neurosurgery, 130(4), 1080–1097.

    Article  Google Scholar 

  • Dhar, R., Sandler, R. H., Manwaring, K., & Mansy, H. A. (2019). Noninvasive detection of elevated intracranial pressure using tympanic membrane pulse. In 2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

    Google Scholar 

  • Dhar, R., Sandler, R., Manwaring, K., & Mansy, H. (2020). Spectral analysis of tympanic membrane pulse signal: An approach for noninvasive detection of elevated intracranial pressure. In 2020 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

    Google Scholar 

  • Dhar, R., Sandler, R. H., Manwaring, K., Kostick, N., & Mansy, H. A. (2021a). Noninvasive detection of elevated ICP using spontaneous tympanic membrane pulsation. Scientific Reports, 11(1).

    Google Scholar 

  • Dhar, R., Sandler, R. H., Manwaring, K., & Mansy, H. A. (2021b). Noninvasive detection of elevated intracranial pressure using spectral analysis of tympanic membrane pulsation signals. In 2021 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

    Google Scholar 

  • Dunn, L. T. (2002). Raised intracranial pressure. Journal of Neurology, Neurosurgery & Psychiatry, 73(suppl 1), i23–i27.

    Article  Google Scholar 

  • Eide, P. K. (2006). Comparison of simultaneous continuous intracranial pressure (ICP) signals from a Codman and a Camino ICP sensor. Medical Engineering & Physics, 28(6), 542–549.

    Article  Google Scholar 

  • Eide, P. K. (2016). The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: Results from ventricular infusion testing. Journal of Neurosurgery, 125(6), 1493–1503.

    Article  Google Scholar 

  • El-Bouri, W. K., Vignali, D., Iliadi, K., Bulters, D., Marchbanks, R. J., Birch, A. A., & Simpson, D. M. (2018). Quantifying the contribution of intracranial pressure and arterial blood pressure to spontaneous tympanic membrane displacement. Physiological Measurement, 39(8), 085002.

    Article  Google Scholar 

  • Elner, Ä., Ingelstedt, S., & Ivarsson, A. (1971). A method for studies of the Middle Ear Mechanics. Acta Oto-Laryngologica, 72(1–6), 191–200.

    Article  Google Scholar 

  • Evensen, K. B., & Eide, P. K. (2020). Measuring intracranial pressure by invasive, less invasive or non-invasive means: Limitations and avenues for improvement. Fluids and Barriers of the CNS, 17(1).

    Google Scholar 

  • Evensen, K. B., Paulat, K., Prieur, F., Holm, S., & Eide, P. K. (2018). Utility of the tympanic membrane pressure waveform for non-invasive estimation of the intracranial pressure waveform. Scientific Reports, 8(1).

    Google Scholar 

  • Finch, L. C., Marchbanks, R. J., Bulters, D., & Birch, A. A. (2018). Refining non-invasive techniques to measure intracranial pressure: Comparing evoked and spontaneous tympanic membrane displacements. Physiological Measurement, 39(2), 025007.

    Article  Google Scholar 

  • Franz, B., & Anderson, C. (2008). Effect of static middle-ear and intracranial pressure changes on differential electrocochleographic response. The International Tinnitus Journal, 4(2), 101–107.

    Google Scholar 

  • Frič, R., & Eide, P. K. (2015). Comparison of pulsatile and static pressures within the intracranial and lumbar compartments in patients with Chiari malformation type 1: A prospective observational study. Acta Neurochirurgica, 157(8), 1411–1423.

    Article  Google Scholar 

  • Gopen, Q., Rosowski, J. J., & Merchant, S. N. (1997). Anatomy of the normal human cochlear aqueduct with functional implications. Hearing Research, 107(1–2), 9–22.

    Article  Google Scholar 

  • Gwer, S., Sheward, V., Birch, A., Marchbanks, R., Idro, R., Newton, C. R., Kirkham, F. J., Lin, J.-P., & Lim, M. (2013). The tympanic membrane displacement analyser for monitoring intracranial pressure in children. Child's Nervous System, 29(6), 927–933.

    Article  Google Scholar 

  • Hagel, S., Bruns, T., Pletz, M. W., Engel, C., Kalff, R., & Ewald, C. (2014). External ventricular drain infections: Risk factors and outcome. Interdisciplinary Perspectives on Infectious Diseases, 2014, 1–6.

    Article  Google Scholar 

  • Harris, O. A., Bruce, C. A., Reid, M., Cheeks, R., Easley, K., Surles, M. C., Pan, Y., Rhoden-Salmon, D., Webster, D., & Crandon, I. (2008). Examination of the management of traumatic brain injury in the developing and developed world: Focus on Resource Utilization, protocols, and practices that alter outcome. Journal of Neurosurgery, 109(3), 433–438.

    Article  Google Scholar 

  • Haubrich, C., Czosnyka, M., Diehl, R., Smielewski, P., & Czosnyka, Z. (2016). Ventricular volume load reveals the mechanoelastic impact of communicating hydrocephalus on dynamic cerebral autoregulation. PLOS ONE, 11(7).

    Google Scholar 

  • Holloway, K. L., Barnes, T., Choi, S., Bullock, R., Marshall, L. F., Eisenberg, H. M., Jane, J. A., Ward, J. D., Young, H. F., & Marmarou, A. (1996). Ventriculostomy infections: The effect of monitoring duration and catheter exchange in 584 patients. Journal of Neurosurgery, 85(3), 419–424.

    Article  Google Scholar 

  • Hommerich, K. W. (1964). Hearing disorders and disturbances of the olfactory system in intracranial diseases. Archiv für Ohren-, Nasen- und Kehlkopfheilkunde, 183, 86–124.

    Article  Google Scholar 

  • Jeong, J.-H. (2016). The pathophysiology of brain edema and intracranial hypertension. Journal of Neurocritical Care, 9(2), 59–62.

    Article  Google Scholar 

  • Jernigan, S. C., Berry, J. G., Graham, D. A., & Goumnerova, L. (2014). The comparative effectiveness of ventricular shunt placement versus endoscopic third ventriculostomy for initial treatment of hydrocephalus in infants. Journal of Neurosurgery: Pediatrics, 13(3), 295–300.

    Google Scholar 

  • Kaur, P., & Sharma, S. (2018). Recent advances in pathophysiology of traumatic brain injury. Current Neuropharmacology, 16(8), 1224–1238.

    Article  Google Scholar 

  • Kellie, G. (1824). An account of the appearances observed in the dissection of two of three individuals presumed to have perished in the storm of the 3d, and whose bodies were discovered in the vicinity of leith on the morning of the 4th, November 1821; with some reflections on the pathology of the brain: Part I. Transactions. Medico-Chirurgical Society of Edinburgh, 1, 84–122.

    Google Scholar 

  • Kerr, M., Crago, E. A., & Brotto, V. (2004). Nursing Management: Acute Intracranial Problems. In S. M. Lewis, D. Brown, H. Edward, M. M. Heitkemper, & S. R. Dirksen (Eds.), Lewis’s Medical-Surgical Nursing: Assessment and management of clinical problems (pp. 1493–1526). St Louis, Ed., , Elsevier/Mosby, ch. 55.

    Google Scholar 

  • Kerscher, S. R., Schöni, D., Hurth, H., Neunhoeffer, F., Haas-Lude, K., Wolff, M., & Schuhmann, M. U. (2020). The relation of optic nerve sheath diameter (ONSD) and intracranial pressure (ICP) in pediatric neurosurgery practice – Part I: Correlations, age-dependency and cut-off values. Child’s Nervous System, 36(1), 99–106.

    Article  Google Scholar 

  • Kirkness, C. J., Mitchell, P. H., Burr, R. L., March, K. S., & Newell, D. W. (2000). Intracranial pressure waveform analysis: Clinical and research implications. Journal of Neuroscience Nursing, 32(5), 271–277.

    Article  Google Scholar 

  • Kosteljanetz, M., Borgesen, S. E., Stjernholm, P., Christensen, L., Osgaard, O., Gjerris, F., & Rosenorn, J. (1986). Clinical evaluation of a simple epidural pressure sensor. Acta Neurochirurgica, 83(3–4), 108–111.

    Article  Google Scholar 

  • Kostick, N., Manwaring, K., Dhar, R., Sandler, R., & Mansy, H. (2021). The ‘Brain Stethoscope’: A non-invasive method for detecting elevated intracranial pressure. CurReus, 13(3), e13865.

    Google Scholar 

  • Lang, E. W., Paulat, K., Witte, C., Zolondz, J., & Mehdorn, H. M. (2003). Noninvasive intracranial compliance monitoring. Journal of Neurosurgery, 98(1), 214–218.

    Article  Google Scholar 

  • Mallen, J. R., & Roberts, D. S. (2019). Scuba medicine for otolaryngologists: Part I. Diving into scuba physiology and injury prevention. The Laryngoscope, 130(1), 52–58.

    Article  Google Scholar 

  • Marchbanks, R. J. (1980). A study of tympanic membrane displacement, Ph.D. dissertation, Dept. Mech. Eng., Brunel University.

    Google Scholar 

  • Marchbanks, R. J., Reid, A., Martin, A. M., Brightwell, A. P., & Bateman, D. (1987). The effect of raised intracranial pressure on intracochlear fluid pressure: Three case studies. British Journal of Audiology, 21(2), 127–130.

    Article  Google Scholar 

  • Mendelow, A. D., Rowan, J. O., Murray, L., & Kerr, A. E. (1983). A clinical comparison of subdural screw pressure measurements with ventricular pressure. Journal of Neurosurgery, 58(1), 45–50.

    Article  Google Scholar 

  • Miller, C., & Tummala, R. P. (2017). Risk factors for hemorrhage associated with external ventricular drain placement and removal. Journal of Neurosurgery, 126(1), 289–297.

    Article  Google Scholar 

  • Mollman, H. D., Rockswold, G. L., & Ford, S. E. (1988). A clinical comparison of subarachnoid catheters to ventriculostomy and subarachnoid bolts: A prospective study. Journal of Neurosurgery, 68(5), 737–741.

    Article  Google Scholar 

  • Monro, A. (1994). Observations on the structure and functions of the nervous system: Illustrated with tables. Landmark Library of Neurology & Neurosurgery.

    Google Scholar 

  • Nag, D. S., Sahu, S., Swain, A., & Kant, S. (2019). Intracranial pressure monitoring: Gold standard and recent innovations. World Journal of Clinical Cases, 7(13), 1535–1553.

    Article  Google Scholar 

  • Pinto, V. L., Tadi, P., & Adeyinka, A. (2021). Increased intracranial pressure. In StatPearls. StatPearls Publishing.

    Google Scholar 

  • Poca, M. A., Sahuquillo, J., Topczewski, T., Peñarrubia, M. J., & Muns, A. (2007). Is intracranial pressure monitoring in the epidural space reliable? Fact and fiction. Journal of Neurosurgery, 106(4), 548–556.

    Article  Google Scholar 

  • Popovic, D., Khoo, M., & Lee, S. (2009). Noninvasive monitoring of intracranial pressure. Recent Patents on Biomedical Engineeringe, 2(3), 165–179.

    Article  Google Scholar 

  • Raichle, M. E., & PLUM, F. (1972). Hyperventilation and cerebral blood flow. Stroke, 3(5), 566–575.

    Article  Google Scholar 

  • Reid, A., Marchbanks, R. J., Bateman, D. E., Martin, A. M., Brightwell, A. P., & Pickard, J. D. (1989). Mean intracranial pressure monitoring by a non-invasive audiological technique: A pilot study. Journal of Neurology, Neurosurgery & Psychiatry, 52(5), 610–612.

    Article  Google Scholar 

  • Reid, A., Marchbanks, R. J., Burge, D. M., Martin, A. M., Bateman, D. E., Pickard, J. D., & Brightwell, A. P. (1990). The relationship between intracranial pressure and tympanic membrane displacement. British Journal of Audiology, 24(2), 123–129.

    Article  Google Scholar 

  • Rengachary, S. S., & Ellenbogen, R. G. (2008). Principles of neurosurgery (2nd ed.). Elsevier Mosby.

    Google Scholar 

  • Rinker, E. K., Williams, T. R., & Myers, D. T. (2015). CSF shunt complications: What the abdominal imager needs to know. Abdominal Imaging, 40(6), 2030–2040.

    Article  Google Scholar 

  • Rodríguez-Boto, G., Rivero-Garvía, M., Gutiérrez-González, R., & Márquez-Rivas, J. (2015). Basic concepts about brain pathophysiology and intracranial pressure monitoring. Neurología (English Edition), 30(1), 16–22.

    Article  Google Scholar 

  • Rowe, D. P., & O'Leary, S. J. (2014). Auditory system, peripheral. Encyclopedia of the Neurological Sciences, 329–334.

    Google Scholar 

  • Samuel, M., Burge, D. M., & Marchbanks, R. J. (1998). Tympanic membrane displacement testing in regular assessment of intracranial pressure in eight children with shunted hydrocephalus. Journal of Neurosurgery, 88(6), 983–995.

    Article  Google Scholar 

  • Schuhmann, M. U., Sood, S., McAllister, J. P., Jaeger, M., Ham, S. D., Czosnyka, Z., & Czosnyka, M. (2008). Value of overnight monitoring of intracranial pressure in hydrocephalic children. Pediatric Neurosurgery, 44(4), 269–279.

    Article  Google Scholar 

  • Sharif, S. J., Campbell-Bell, C. M., Bulters, D. O., Marchbanks, R. J., & Birch, A. A. (2018). Does the variability of evoked tympanic membrane displacement data (V M) increase as the magnitude of the pulse amplitude increases? Acta Neurochirurgica Supplement, 103–106.

    Google Scholar 

  • Shimbles, S., Dodd, C., Banister, K., Mendelow, A. D., & Chambers, I. R. (2005). Clinical comparison of tympanic membrane displacement with invasive ICP measurements. In Intracranial Pressure and Brain Monitoring XII (pp. 197–199).

    Google Scholar 

  • Stettin, E., Paulat, K., Schulz, C., Kunz, U., & Mauer, U. M. (2011). Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane. Journal of Clinical Monitoring and Computing, 25(3), 203–210.

    Article  Google Scholar 

  • Torrecilla, S. G., & Avan, P. (2021). Wideband tympanometry patterns in relation to intracranial pressure. Hearing Research, 408, 108312.

    Article  Google Scholar 

  • Unterberg, A. W., Stover, J., Kress, B., & Kiening, K. L. (2004). Edema and brain trauma. Neuroscience, 129(4), 1019–1027.

    Article  Google Scholar 

  • Voss, S. E., Horton, N. J., Tabucchi, T. H., Folowosele, F. O., & Shera, C. A. (2006). Posture-induced changes in distortion-product Otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocritical Care, 4(3), 251–257.

    Article  Google Scholar 

  • Westhout, F. D., Paré, L. S., Delfino, R. J., & Cramer, S. C. (2008). Slope of the intracranial pressure waveform after traumatic brain injury. Surgical Neurology, 70(1), 70–74.

    Article  Google Scholar 

  • Wever, E. G., & Lawrence, M. (2016). Physiological acoustics. Princeton University Press.

    Google Scholar 

  • Williams, M. A., Malm, J., Eklund, A., Horton, N. J., & Voss, S. E. (2016). Distortion product otoacoustic emissions and intracranial pressure during CSF infusion testing. Aerospace Medicine and Human Performance, 87(10), 844–851.

    Article  Google Scholar 

  • Włodyka, J. (1978). Studies on cochlear aqueduct patency. Annals of Otology, Rhinology & Laryngology, 87(1), 22–28.

    Article  Google Scholar 

  • Yucel, E., Ardic, F. N., Tumkaya, F., Kara, C. O., & Topuz, B. (2021). Detecting intralabyrinthine pressure increase by postural manipulation with wideband tympanometry and distortion product Otoacoustic emissions. Turkish Archives of Otorhinolaryngology, 58(4), 203–207.

    Article  Google Scholar 

  • Zapata-Vázquez, R. E., Álvarez-Cervera, F. J., Alonzo-Vázquez, F. M., García-Lira, J. R., Granados-García, V., Pérez-Herrera, N. E., & Medina-Moreno, M. (2017). Cost effectiveness of intracranial pressure monitoring in pediatric patients with severe traumatic brain injury: A simulation modeling approach. Value in Health Regional Issues, 14, 96–102.

    Article  Google Scholar 

  • Zauner, A., Bullock, R., Kuta, A. J., Woodward, J., & Young, H. F. (1996). Glutamate release and cerebral blood flow after severe human head injury. Clinical Aspects of Microdialysis, 40–44.

    Google Scholar 

  • Zweifel, C., Lavinio, A., Steiner, L. A., Radolovich, D., Smielewski, P., Timofeev, I., Hiler, M., Balestreri, M., Kirkpatrick, P. J., Pickard, J. D., Hutchinson, P., & Czosnyka, M. (2008). Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurgical Focus, 25(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhar, R., Sandler, R.H., Manwaring, K., Cosby, J.L., Mansy, H.A. (2023). Non-invasive ICP Monitoring by Auditory System Measurements. In: Obeid, I., Picone, J., Selesnick, I. (eds) Signal Processing in Medicine and Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-21236-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21236-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21235-2

  • Online ISBN: 978-3-031-21236-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics