Skip to main content

Investigation of the Performance of fNIRS-based BCIs for Assistive Systems in the Presence of Acute Pain

  • Chapter
  • First Online:
Signal Processing in Medicine and Biology

Abstract

A brain-computer interface (BCI) enables the control of a peripheral device using signals acquired from the brain. A key application of BCIs is in assistive systems for patients with motor and communication disabilities. To be able to control an assistive device using the patient’s thoughts, the BCI first needs to be trained to respond to the patient’s cortical signals. Pain is a condition prevalent in patients with motor and communication disabilities. Pain is expected to impact and modify cortical signals. This means that if the patient does not experience any pain while training the BCI for a certain task, but experiences pain later, while using the BCI for the same task, the performance of the BCI could be negatively impacted due to the potential influence of pain on the cortical activity related to the task. As a result, the assistive device connected to the BCI may fail to function as intended. This work aims to study the impact of the presence of acute pain on the performance of a functional near-infrared spectroscopy (fNIRS)-based BCI. The performance of the BCI is measured by the classification accuracy of the BCI in response to two mental arithmetic tasks, under 4 scenarios: (1) the BCI is trained and tested on pain-free data; (2) the BCI is trained on pain-free data and tested on data obtained in the presence of pain; (3) the BCI is trained and tested on data obtained in the presence of pain; and (4) the BCI is trained on data obtained in the presence of pain and tested on pain-free data. Classification is performed using two types of algorithms – a support vector machine (SVM), which is a classical supervised learning algorithm to which hand-crafted features from the frequency-domain representation of the cortical fNIRS signals are fed as input, and a convolutional neural network (CNN), that automatically learns features from the input data. These two classifiers were chosen to study the effects of the features used (manual vs autogenerated) and the complexity of the classifier on the BCI’s performance in the presence of pain. It is observed that the classification accuracy of the BCI is high for scenarios 1 and 3 irrespective of the classifier used, as not much difference in the cortical activity is expected between the training and application stages. However, the accuracy drops to the chance level in scenarios 2 and 4 for both classifiers. Our results indicate that the presence of pain could have a significant impact on the performance of the fNIRS-based BCIs, suggesting that it is critical to consider the effects of the presence of pain when using BCIs in assistive systems for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain–computer interface systems: Progress and prospects. Expert Review of Medical Devices, 4(4), 463–474.

    Article  Google Scholar 

  • Alonso-Valerdi, L. M., Salido-Ruiz, R. A., & Ramirez-Mendoza, R. A. (2015). Motor imagery based brain–computer interfaces: An emerging technology to rehabilitate motor deficits. Neuropsychologia, 79, 354–363.

    Article  Google Scholar 

  • Ardeshirpour, Y., Gandjbakhche, A. H., & Najafizadeh, L. (2013). Biophotonics techniques for structural and functional imaging, in vivo. Studies in Health Technology and Informatics, 185, 265–297.

    Google Scholar 

  • Artemenko, C., Soltanlou, M., Ehlis, A.-C., Nuerk, H.-C., & Dresler, T. (2018). The neural correlates of mental arithmetic in adolescents: A longitudinal fNIRS study. Behavioral and Brain Functions, 14(1), 1–13.

    Article  Google Scholar 

  • Asgher, U., Khalil, K., Ayaz, Y., Ahmad, R., & Khan, M. J. (2020). Classification of mental workload (MWL) using support vector machines (SVM) and convolutional neural networks (CNN). In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (ICoMET) (pp. 1–6).

    Google Scholar 

  • Attallah, O., Abougharbia, J., Tamazin, M., & Nasser, A. A. (2020). A BCI system based on motor imagery for assisting people with motor deficiencies in the limbs. Brain Sciences, 10(11), 864.

    Article  Google Scholar 

  • Baik, S. Y., Kim, J.-Y., Choi, J., Baek, J. Y., Park, Y., Kim, Y., Jung, M., & Lee, S.-H. (2019). Prefrontal asymmetry during cognitive tasks and its relationship with suicide ideation in major depressive disorder: An fNIRS study. Diagnostics, 9(4), 193.

    Article  Google Scholar 

  • Balconi, M., Grippa, E., & Vanutelli, M. E. (2015). What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing. Brain and Cognition, 95, 67–76.

    Article  Google Scholar 

  • Borgheai, S. B., McLinden, J., Zisk, A. H., Hosni, S. I., Deligani, R. J., Abtahi, M., Mankodiya, K., & Shahriari, Y. (2020). Enhancing communication for people in late-stage ALS using an fNIRS-based BCI system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(5), 1198–1207.

    Article  Google Scholar 

  • Brown, J. E., Chatterjee, N., Younger, J., & Mackey, S. (2011). Towards a physiology-based measure of pain: Patterns of human brain activity distinguish painful from non-painful thermal stimulation. PLoS One, 6(9), e24124.

    Article  Google Scholar 

  • Bunce, S. C., Izzetoglu, K., Ayaz, H., Shewokis, P., Izzetoglu, M., Pourrezaei, K., & Onaral, B. (2011). Implementation of fNIRS for monitoring levels of expertise and mental workload. In International Conference on Foundations of Augmented Cognition (pp. 13–22).

    Google Scholar 

  • Cabeza, R., & Kingstone, A. (2006). Handbook of functional neuroimaging of cognition. Mit Press.

    Book  Google Scholar 

  • Chaudhary, S., Taran, S., Bajaj, V., & Sengur, A. (2019). Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sensors Journal, 19(12), 4494–4500.

    Article  Google Scholar 

  • Chhabra, H., Shajil, N., Venkatasubramanian, G., & others. (2020). Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. Biomedical Signal Processing and Control, 62, 102133.

    Article  Google Scholar 

  • Comaniciu, A., & Najafizadeh, L. (2018). Enabling communication for locked-in syndrome patients using deep learning and an emoji-based brain computer interface. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1–4).

    Google Scholar 

  • Crombez, G., Vlaeyen, J. W. S., Heuts, P. H. T. G., & Lysens, R. (1999). Pain-related fear is more disabling than pain itself: Evidence on the role of pain-related fear in chronic back pain disability. Pain, 80(1–2), 329–339.

    Article  Google Scholar 

  • Cui, Z., Chen, W., & Chen, Y. (2016). Multi-scale convolutional neural networks for time series classification. ArXiv Preprint ArXiv:1603.06995.

    Google Scholar 

  • Dadgostar, M., Setarehdan, S. K., Shahzadi, S., & Akin, A. (2018). Classification of schizophrenia using SVM via fNIRS. Biomedical Engineering: Applications, Basis and Communications, 30(02), 1850008.

    Google Scholar 

  • Daly, J. J., & Wolpaw, J. R. (2008). Brain–computer interfaces in neurological rehabilitation. The Lancet Neurology, 7(11), 1032–1043.

    Article  Google Scholar 

  • Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research, 77(1–2), 45–52.

    Article  Google Scholar 

  • Emberson, L. L., Zinszer, B. D., Raizada, R. D. S., & Aslin, R. N. (2017). Decoding the infant mind: Multivariate pattern analysis (MVPA) using fNIRS. PLoS One, 12(4), e0172500.

    Article  Google Scholar 

  • Erdoĝan, S. B., Özsarfati, E., Dilek, B., Kadak, K. S., Hanoĝlu, L., & Akn, A. (2019). Classification of motor imagery and execution signals with population-level feature sets: Implications for probe design in fNIRS based BCI. Journal of Neural Engineering, 16(2), 26029.

    Article  Google Scholar 

  • Fernandez Rojas, R., Huang, X., & Ou, K.-L. (2019). A machine learning approach for the identification of a biomarker of human pain using fNIRS. Scientific Reports, 9(1), 1–12.

    Article  Google Scholar 

  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921–935.

    Article  Google Scholar 

  • Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326(5951), 399–403.

    Article  Google Scholar 

  • Gaur, P., Gupta, H., Chowdhury, A., McCreadie, K., Pachori, R. B., & Wang, H. (2021). A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI. IEEE Transactions on Instrumentation and Measurement, 70, 1–9.

    Article  Google Scholar 

  • Glotzbach, E., Mühlberger, A., Gschwendtner, K., Fallgatter, A. J., Pauli, P., & Herrmann, M. J. (2011). Prefrontal brain activation during emotional processing: A functional near infrared spectroscopy study (fNIRS). The Open Neuroimaging Journal, 5, 33.

    Article  Google Scholar 

  • Gramlich, M. A., Neer, S. M., Beidel, D. C., Bohil, C. J., & Bowers, C. A. (2017). A functional near-infrared spectroscopy study of trauma-related auditory and olfactory cues: Posttraumatic stress disorder or combat experience? Journal of Traumatic Stress, 30(6), 656–665.

    Article  Google Scholar 

  • Greenberg, M. S., Glick, M., & Ship, J. A. (2008). Burkett′ s textbook of oral medicine. BC Becker Inc.

    Google Scholar 

  • Haddad, A., & Najafizadeh, L. (2016). Multi-scale analysis of the dynamics of brain functional connectivity using EEG. IEEE Biomedical Circuits and Systems Conference (BioCAS), 2016, 240–243.

    Google Scholar 

  • Hennrich, J., Herff, C., Heger, D., & Schultz, T. (2015). Investigating deep learning for fNIRS based BCI. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2844–2847).

    Google Scholar 

  • Herff, C., Heger, D., Putze, F., Hennrich, J., Fortmann, O., & Schultz, T. (2013). Classification of mental tasks in the prefrontal cortex using fNIRS. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2160–2163)..

    Google Scholar 

  • Ho, T. K. K., Gwak, J., Park, C. M., Khare, A., & Song, J.-I. (2019). Deep leaning-based approach for mental workload discrimination from multi-channel fNIRS. In Recent trends in communication, computing, and electronics (pp. 431–440). Springer.

    Google Scholar 

  • Holtzer, R., Mahoney, J. R., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Verghese, J. (2011). fNIRS study of walking and walking while talking in young and old individuals. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 66(8), 879–887.

    Article  Google Scholar 

  • Hong, K.-S., Bhutta, M. R., Liu, X., & Shin, Y.-I. (2017). Classification of somatosensory cortex activities using fNIRS. Behavioural Brain Research, 333, 225–234.

    Article  Google Scholar 

  • Hong, K.-S., Naseer, N., & Kim, Y.-H. (2015). Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI. Neuroscience Letters, 587, 87–92.

    Article  Google Scholar 

  • Ieong, H. F., & Yuan, Z. (2017). Abnormal resting-state functional connectivity in the orbitofrontal cortex of heroin users and its relationship with anxiety: A pilot fNIRS study. Scientific Reports, 7(1), 1–14.

    Article  Google Scholar 

  • Irani, F., Platek, S. M., Bunce, S., Ruocco, A. C., & Chute, D. (2007). Functional near infrared spectroscopy (fNIRS): An emerging neuroimaging technology with important applications for the study of brain disorders. The Clinical Neuropsychologist, 21(1), 9–37.

    Article  Google Scholar 

  • Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264–1267.

    Article  Google Scholar 

  • Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., & Ritter, H. (2004). BCI competition 2003-data set Iib: Support vector machines for the P300 speller paradigm. IEEE Transactions on Biomedical Engineering, 51(6), 1073–1076.

    Article  Google Scholar 

  • Kaur, B., Singh, D., & Roy, P. P. (2018). EEG based emotion classification mechanism in BCI. Procedia Computer Science, 132, 752–758.

    Article  Google Scholar 

  • Kim, K.-T., Carlson, T., & Lee, S.-W. (2013). Design of a robotic wheelchair with a motor imagery based brain-computer interface. International Winter Workshop on Brain-Computer Interface (BCI), 2013, 46–48.

    Google Scholar 

  • Koenraadt, K. L. M., Roelofsen, E. G. J., Duysens, J., & Keijsers, N. L. W. (2014). Cortical control of normal gait and precision stepping: An fNIRS study. NeuroImage, 85, 415–422.

    Article  Google Scholar 

  • Koike, S., Nishimura, Y., Takizawa, R., Yahata, N., & Kasai, K. (2013). Near-infrared spectroscopy in schizophrenia: A possible biomarker for predicting clinical outcome and treatment response. Frontiers in Psychiatry, 4, 145.

    Article  Google Scholar 

  • Lang, X., Wen, D., Li, Q., Yin, Q., Wang, M., & Xu, Y. (2021). fNIRS evaluation of frontal and temporal cortex activation by verbal fluency task and high-level cognition task for detecting anxiety and depression. Frontiers in Psychiatry, 12, 973.

    Article  Google Scholar 

  • Laureys, S., Boly, M., & Tononi, G. (2009). Functional neuroimaging. The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology, s, 1.

    Google Scholar 

  • Leeb, R., & Pérez-Marcos, D. (2020). Brain-computer interfaces and virtual reality for neurorehabilitation. Handbook of Clinical Neurology, 168, 183–197.

    Article  Google Scholar 

  • Leff, D. R., Orihuela-Espina, F., Elwell, C. E., Athanasiou, T., Delpy, D. T., Darzi, A. W., & Yang, G.-Z. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage, 54(4), 2922–2936.

    Article  Google Scholar 

  • Lloyd-Fox, S., Papademetriou, M., Darboe, M. K., Everdell, N. L., Wegmuller, R., Prentice, A. M., Moore, S. E., & Elwell, C. E. (2014). Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa. Scientific Reports, 4(1), 1–8.

    Article  Google Scholar 

  • Loeser, J. D., & Melzack, R. (1999). Pain: An overview. The Lancet, 353(9164), 1607–1609.

    Article  Google Scholar 

  • Lopez-Martinez, D., Peng, K., Lee, A., Borsook, D., & Picard, R. (2019). Pain Detection with FNIRS-measured brain signals: A personalized machine learning approach using the wavelet transform and Bayesian hierarchical modeling with Dirichlet process priors. In 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (pp. 304–309).

    Google Scholar 

  • Lu, C.-M., Zhang, Y.-J., Biswal, B. B., Zang, Y.-F., Peng, D.-L., & Zhu, C.-Z. (2010). Use of fNIRS to assess resting state functional connectivity. Journal of Neuroscience Methods, 186(2), 242–249.

    Article  Google Scholar 

  • Ma, T., Lyu, H., Liu, J., Xia, Y., Qian, C., Evans, J., Xu, W., Hu, J., Hu, S., & He, S. (2020). Distinguishing bipolar depression from major depressive disorder using fNIRS and deep neural network. Progress In Electromagnetics Research, 169, 73–86.

    Article  Google Scholar 

  • Ma, T., Wang, S., Xia, Y., Zhu, X., Evans, J., Sun, Y., & He, S. (2021). CNN-based classification of fNIRS signals in motor imagery BCI system. Journal of Neural Engineering, 18(5), 56019.

    Article  Google Scholar 

  • Mane, R., Chew, E., Phua, K. S., Ang, K. K., Robinson, N., Vinod, A. P., & Guan, C. (2019). Prognostic and monitory EEG-biomarkers for BCI upper-limb stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(8), 1654–1664.

    Article  Google Scholar 

  • Melzack, R. (1975). The McGill Pain Questionnaire: Major properties and scoring methods. Pain, 1(3), 277–299.

    Article  Google Scholar 

  • Melzack, R. (1999). Pain and stress: A new perspective. In Psychosocial factors in pain: Critical perspectives (pp. 89–106).

    Google Scholar 

  • Melzack, R. (2001). Pain and the neuromatrix in the brain. Journal of Dental Education, 65(12), 1378–1382.

    Article  Google Scholar 

  • Naseer, N., & Hong, K.-S. (2015). fNIRS-based brain-computer interfaces: A review. Frontiers in Human Neuroscience, 9, 3.

    Google Scholar 

  • Nishiyori, R., Bisconti, S., & Ulrich, B. (2016). Motor cortex activity during functional motor skills: An fNIRS study. Brain Topography, 29(1), 42–55.

    Article  Google Scholar 

  • Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567.

    Article  Google Scholar 

  • Norman, S. L., Dennison, M., Wolbrecht, E., Cramer, S. C., Srinivasan, R., & Reinkensmeyer, D. J. (2016). Movement anticipation and EEG: Implications for BCI-contingent robot therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(8), 911–919.

    Article  Google Scholar 

  • Ono, Y., Noah, J. A., Zhang, X., Nomoto, Y., Suzuki, T., Shimada, S., Tachibana, A., Bronner, S., & Hirsch, J. (2015). Motor learning and modulation of prefrontal cortex: An fNIRS assessment. Journal of Neural Engineering, 12(6), 66004.

    Article  Google Scholar 

  • Oskoei, M. A., Gan, J. Q., & Hu, H. (2009). Adaptive schemes applied to online SVM for BCI data classification. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2600–2603).

    Google Scholar 

  • Pan, J., Xie, Q., Huang, H., He, Y., Sun, Y., Yu, R., & Li, Y. (2018). Emotion-related consciousness detection in patients with disorders of consciousness through an EEG-based BCI system. Frontiers in Human Neuroscience, 12, 198.

    Article  Google Scholar 

  • Peifer, M., Zhu, L., & Najafizadeh, L. (2014). Real-time classification of actual vs imagery finger tapping using fNIRS. Biomedical Optics, BM3A–34.

    Google Scholar 

  • Plichta, M. M., Gerdes, A. B. M., Alpers, G. W., Harnisch, W., Brill, S., Wieser, M. J., & Fallgatter, A. J. (2011). Auditory cortex activation is modulated by emotion: A functional near-infrared spectroscopy (fNIRS) study. NeuroImage, 55(3), 1200–1207.

    Article  Google Scholar 

  • Power, S. D., Falk, T. H., & Chau, T. (2010). Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. Journal of Neural Engineering, 7(2), 26002.

    Article  Google Scholar 

  • Power, S. D., Kushki, A., & Chau, T. (2011). Towards a system-paced near-infrared spectroscopy brain–computer interface: Differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. Journal of Neural Engineering, 8(6), 66004.

    Article  Google Scholar 

  • Power, S. D., Kushki, A., & Chau, T. (2012). Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: Toward a three-state NIRS-BCI. BMC Research Notes, 5(1), 1–10.

    Article  Google Scholar 

  • Rainville, P. (2002). Brain mechanisms of pain affect and pain modulation. Current Opinion in Neurobiology, 12(2), 195–204.

    Article  Google Scholar 

  • Rea, M., Rana, M., Lugato, N., Terekhin, P., Gizzi, L., Brötz, D., Fallgatter, A., Birbaumer, N., Sitaram, R., & Caria, A. (2014). Lower limb movement preparation in chronic stroke: A pilot study toward an fNIRS-BCI for gait rehabilitation. Neurorehabilitation and Neural Repair, 28(6), 564–575.

    Article  Google Scholar 

  • Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. Encyclopedia of Database Systems, 5, 532–538.

    Article  Google Scholar 

  • Rojas, R. F., Huang, X., Romero, J., & Ou, K.-L. (2017). FNIRS approach to pain assessment for non-verbal patients. In International Conference on Neural Information Processing (pp. 778–787).

    Google Scholar 

  • Rojas, R. F., Romero, J., Lopez-Aparicio, J., & Ou, K.-L. (2021). Pain assessment based on fnirs using bi-lstm rnns. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) (pp. 399–402).

    Google Scholar 

  • Saadati, M., Nelson, J., & Ayaz, H. (2019). Mental workload classification from spatial representation of fnirs recordings using convolutional neural networks. In 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1–6).

    Google Scholar 

  • San Juan, J., Hu, X.-S., Issa, M., Bisconti, S., Kovelman, I., Kileny, P., & Basura, G. (2017). Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS). PLoS One, 12(6), e0179150.

    Article  Google Scholar 

  • Schudlo, L. C., & Chau, T. (2015). Towards a ternary NIRS-BCI: Single-trial classification of verbal fluency task, Stroop task and unconstrained rest. Journal of Neural Engineering, 12(6), 66008.

    Article  Google Scholar 

  • Schudlo, L. C., & Chau, T. (2018). Development of a ternary near-infrared spectroscopy brain-computer interface: Online classification of verbal fluency task, stroop task and rest. International Journal of Neural Systems, 28(04), 1750052.

    Article  Google Scholar 

  • Selim, S., Tantawi, M. M., Shedeed, H. A., & Badr, A. (2018). A csp\am-ba-svm approach for motor imagery bci system. IEEE Access, 6, 49192–49208.

    Article  Google Scholar 

  • Seminowicz, D. A., & Moayedi, M. (2017). The dorsolateral prefrontal cortex in acute and chronic pain. The Journal of Pain, 18(9), 1027–1035.

    Article  Google Scholar 

  • Shamsi, F., Haddad, A., & others. (2020). Recognizing pain in motor imagery EEG recordings using dynamic functional connectivity graphs. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2869–2872).

    Google Scholar 

  • Shamsi, F., & Najafizadeh, L. (2020). On the effects of pain on fNIRS classification. Optics and the Brain, BM4C–6.

    Google Scholar 

  • Shamsi, F., & Najafizadeh, L. (2021). Multi-class fNIRS classification of motor execution tasks with application to brain-computer interfaces. In Biomedical signal processing (pp. 1–32). Springer.

    Google Scholar 

  • Shin, J., Müller, K.-R., & Hwang, H.-J. (2016). Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic. Scientific Reports, 6(1), 1–11.

    Article  Google Scholar 

  • Singla, R., & Haseena, B. A. (2013). BCI based wheelchair control using steady state visual evoked potentials and support vector machines. International Journal of Soft Computing and Engineering (IJSCE), 3(3), 46–52.

    Google Scholar 

  • Song, H., Chen, L., Gao, R., Bogdan, I. I. M., Yang, J., Wang, S., Dong, W., Quan, W., Dang, W., & Yu, X. (2017). Automatic schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM. BMC Medical Informatics and Decision Making, 17(3), 1–9.

    Google Scholar 

  • Subramanian, A., Shamsi, F., & Najafizadeh, L. (2021). On the reliability of frequency-domain features for fNIRS BCIs in the presence of pain. In 2021 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–5).

    Google Scholar 

  • Tan, D., & Nijholt, A. (2010). Brain-computer interfaces and human-computer interaction. In Brain-computer interfaces (pp. 3–19). Springer.

    Google Scholar 

  • Tanveer, M. A., Khan, M. J., Qureshi, M. J., Naseer, N., & Hong, K.-S. (2019). Enhanced drowsiness detection using deep learning: An fNIRS study. IEEE Access, 7, 137920–137929.

    Article  Google Scholar 

  • Tariq, M., Trivailo, P. M., & Simic, M. (2018). EEG-based BCI control schemes for lower-limb assistive-robots. Frontiers in Human Neuroscience, 12, 312.

    Article  Google Scholar 

  • Tian, F., Smith-Osborne, A., Yennu, A., & Liu, H. (2012). Assessments of posttraumatic stress disorder by functional near infrared spectroscopy: A preliminary report. Biomedical Optics, Bsu4A–5.

    Google Scholar 

  • Tian, F., Yennu, A., Smith-Osborne, A., Gonzalez-Lima, F., North, C. S., & Liu, H. (2014). Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): A functional near infrared spectroscopy study. NeuroImage: Clinical, 4, 808–819.

    Article  Google Scholar 

  • Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., & Choi, J.-W. (2017). Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: Three-class classification of rest, right-, and left-hand motor execution. Neurophotonics, 5(1), 11008.

    Article  Google Scholar 

  • Treede, R.-D., Kenshalo, D. R., Gracely, R. H., & Jones, A. K. P. (1999). The cortical representation of pain. Pain, 79(2–3), 105–111.

    Article  Google Scholar 

  • Tsui, C. S. L., Gan, J. Q., & Hu, H. (2011). A self-paced motor imagery based brain-computer interface for robotic wheelchair control. Clinical EEG and Neuroscience, 42(4), 225–229.

    Article  Google Scholar 

  • Urakawa, S., Takamoto, K., Ishikawa, A., Ono, T., & Nishijo, H. (2015). Selective medial prefrontal cortex responses during live mutual gaze interactions in human infants: An fNIRS study. Brain Topography, 28(5), 691–701.

    Article  Google Scholar 

  • Urien, L., & Wang, J. (2019). Top-down cortical control of acute and chronic pain. Psychosomatic Medicine, 81(9), 851.

    Article  Google Scholar 

  • Vanutelli, M. E., & Balconi, M. (2015). Perceiving emotions in human–human and human–animal interactions: Hemodynamic prefrontal activity (fNIRS) and empathic concern. Neuroscience Letters, 605, 1–6.

    Article  Google Scholar 

  • Verner, M., Herrmann, M. J., Troche, S. J., Roebers, C. M., & Rammsayer, T. H. (2013). Cortical oxygen consumption in mental arithmetic as a function of task difficulty: A near-infrared spectroscopy approach. Frontiers in Human Neuroscience, 7, 217.

    Article  Google Scholar 

  • Vidaurre, C., & Blankertz, B. (2010). Towards a cure for BCI illiteracy. Brain Topography, 23(2), 194–198.

    Article  Google Scholar 

  • Villringer, A. (1997). Understanding functional neuroimaging methods based on neurovascular coupling. Optical Imaging of Brain Function and Metabolism, 2, 177–193.

    Article  Google Scholar 

  • Wang, P., Jiang, A., Liu, X., Shang, J., & Zhang, L. (2018). LSTM-based EEG classification in motor imagery tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(11), 2086–2095.

    Article  Google Scholar 

  • Wilcox, T., & Biondi, M. (2015). fNIRS in the developmental sciences. Wiley Interdisciplinary Reviews: Cognitive Science, 6(3), 263–283.

    Google Scholar 

  • Wilson, T. W., Kurz, M. J., & Arpin, D. J. (2014). Functional specialization within the supplementary motor area: A fNIRS study of bimanual coordination. NeuroImage, 85, 445–450.

    Article  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., Vaughan, T. M., & others. (2000). Brain-computer interface technology: A review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164–173.

    Article  Google Scholar 

  • Wolpaw, J. R., McFarland, D. J., Neat, G. W., & Forneris, C. A. (1991). An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78(3), 252–259.

    Article  Google Scholar 

  • Yaqub, M. A., Woo, S.-W., & Hong, K.-S. (2018). Effects of HD-tDCS on resting-state functional connectivity in the prefrontal cortex: An fNIRS study. Complexity, 2018, 1.

    Article  Google Scholar 

  • Yennu, A., Tian, F., Smith-Osborne, A., Gatchel, R. J., Woon, F. L., & Liu, H. (2016). Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy. Scientific Reports, 6(1), 1–14.

    Article  Google Scholar 

  • Zander, T. O., & Kothe, C. (2011). Towards passive brain–computer interfaces: Applying brain–computer interface technology to human–machine systems in general. Journal of Neural Engineering, 8(2), 25005.

    Article  Google Scholar 

  • Zhang, H., Zhang, Y.-J., Lu, C.-M., Ma, S.-Y., Zang, Y.-F., & Zhu, C.-Z. (2010). Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements. NeuroImage, 51(3), 1150–1161.

    Article  Google Scholar 

  • Zhu, Y., Jayagopal, J. K., Mehta, R. K., Erraguntla, M., Nuamah, J., McDonald, A. D., Taylor, H., & Chang, S.-H. (2020). Classifying major depressive disorder using fNIRS during motor rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(4), 961–969.

    Article  Google Scholar 

  • Zimmermann, R., Marchal-Crespo, L., Edelmann, J., Lambercy, O., Fluet, M.-C., Riener, R., Wolf, M., & Gassert, R. (2013). Detection of motor execution using a hybrid fNIRS-biosignal BCI: A feasibility study. Journal of Neuroengineering and Rehabilitation, 10(1), 1–15.

    Article  Google Scholar 

  • Zyma, I., Tukaev, S., Seleznov, I., Kiyono, K., Popov, A., Chernykh, M., & Shpenkov, O. (2019). Electroencephalograms during mental arithmetic task performance. Data, 4(1), 14.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. 1841087. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Najafizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramanian, A., Shamsi, F., Najafizadeh, L. (2023). Investigation of the Performance of fNIRS-based BCIs for Assistive Systems in the Presence of Acute Pain. In: Obeid, I., Picone, J., Selesnick, I. (eds) Signal Processing in Medicine and Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-21236-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21236-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21235-2

  • Online ISBN: 978-3-031-21236-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics