Skip to main content

Molecular Dynamics Study of the Influence of Hydrogen Impurity on the Migration Velocity of [001] and [111] Tilt Boundaries in Palladium

  • Conference paper
  • First Online:
XV International Scientific Conference “INTERAGROMASH 2022” (INTERAGROMASH 2022)

Abstract

This work is devoted to a molecular dynamics study of the influence of hydrogen impurity on the migration mobility of tilt grain boundaries with misorientation axes [111] and [001] in palladium. The dependences of the migration velocity at a temperature of 1500 K on the hydrogen impurity concentration were found for the boundaries under consideration. It is shown that with an increase in the hydrogen concentration in palladium, the grain boundary migration velocity decreases. At a hydrogen concentration of 50%, it becomes approximately two times less than in pure palladium. According to the results obtained, the [111] tilt boundaries are more mobile than the [001] boundaries and, other things being equal, migrate approximately twice as fast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alefeld, G., Volkl, J.: Hydrogen in Metals, p. 480. Springer-Verlag, NY (1978)

    Book  Google Scholar 

  2. Tovbin, Y.K., Votyakov, E.V.: Evaluation of the influence of dissolved hydrogen on mechanical properties of palladium. Phys. Solid State 42, 1192–1195 (2000). https://doi.org/10.1134/1.1131359

    Article  Google Scholar 

  3. Lewis, F.A.: The palladium-hydrogen system. Platin. Met. Rev. 26(1), 20–27 (1982)

    Google Scholar 

  4. Johansson, M., Skúlason, E., Nielsen, G., Murphy, S., Nielsen, R.M., Chorkendorff, I.: Hydrogen adsorption on palladium and palladium hydride at 1 bar. Surf. Sci. 604, 718–729 (2010). https://doi.org/10.1016/j.susc.2010.01.023

    Article  Google Scholar 

  5. Zhou, X.W., Heo, T.W., Wood, B.C., Stavila, V., Kang, S., Allendorf, M.D.: Temperature- and concentration-dependent hydrogen diffusivity in palladium from statistically-averaged molecular dynamics simulations. Scripta Mater. 149, 103–107 (2018). https://doi.org/10.1016/j.scriptamat.2018.02.010

    Article  Google Scholar 

  6. Zakharov, A.P.: Interaction of Hydrogen with Metals, p. 296. Nauka, Moscow (1987)

    Google Scholar 

  7. Gottstein, G., Shvindlerman, L.S.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd edn., p. 711. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  8. Zhu, Q., et al.: In situ atomistic observation of grain boundary migration subjected to defect interaction. Acta Mater. 199, 42–52 (2020). https://doi.org/10.1016/j.actamat.2020.08.021

    Article  Google Scholar 

  9. Niu, L.-L., Peng, Q., Gao, F., Chen, Z., Zhang, Y., Lu, G.-H.: Effects of interstitial defects on stress-driven grain boundary migration in bcc tungsten. J. Nucl. Mater. 512, 246–251 (2018). https://doi.org/10.1016/j.jnucmat.2018.10.014

    Article  Google Scholar 

  10. Gottstein, G., Molodov, D.A., Shvindlerman, L.S.: Grain boundary migration in metals: recent developments. Interface Sci. 6, 7–22 (1998). https://doi.org/10.1023/A:1008641617937

    Article  Google Scholar 

  11. Zhang, H., Upmanyu, M., Srolovitz, D.J.: Curvature driven grain boundary migration in aluminum: molecular dynamics simulations. Acta Mater. 53, 79–86 (2005). https://doi.org/10.1016/j.actamat.2004.09.004

    Article  Google Scholar 

  12. Estrin, Y., Gottstein, G., Rabkin, E., Shvindlerman, L.S.: Grain growth in thin metallic films. Acta Mater. 49(4), 673–681 (2001). https://doi.org/10.1016/S1359-6454(00)00344-X

    Article  Google Scholar 

  13. Cleri, F., Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48(1), 22–33 (1993). https://doi.org/10.1103/PhysRevB.48.22

    Article  Google Scholar 

  14. Chen, C., Zhang, F., Xu, H., Yang, Z., Poletaev, G.M.: Molecular dynamics simulations of dislocation–coherent twin boundary interaction in face-centered cubic metals. J. Mater. Sci. 57(3), 1833–1849 (2022). https://doi.org/10.1007/s10853-021-06837-7

    Article  Google Scholar 

  15. Poletaev, G.M.: Self-diffusion in liquid and solid alloys of the Ti–Al system: molecular-dynamics simulation. J. Exp. Theor. Phys. 133, 455–460 (2021). https://doi.org/10.1134/S1063776121090041

    Article  Google Scholar 

  16. Poletaev, G.M., Zorya, I.V., Rakitin, R.Y., Iliina, M.A.: Interatomic potentials for describing impurity atoms of light elements in fcc metals. Mater. Phys. Mech. 42(4), 380–388 (2019). https://doi.org/10.18720/MPM.4242019_2

    Article  Google Scholar 

  17. Poletaev, G.M., Starostenkov, M.D., Dmitriev, S.V.: Interatomic potentials in the systems Pd-H and Ni-H. Mater. Phys. Mech. 27(1), 53–59 (2016)

    Google Scholar 

  18. Kaibyshev, O.A., Valiev, R.Z.: Grain Boundaries and Properties of Metals, p. 216. Metallurgiya, Moscow (1987)

    Google Scholar 

  19. Poletaev, G.M., Zorya, I.V., Starostenkov, M.D., Rakitin, R.Y., Tabakov, P.Y.: Molecular dynamics simulation of the migration of tilt grain boundaries in Ni and Ni3Al. J. Exp. Theor. Phys. 128, 88–93 (2019). https://doi.org/10.1134/S1063776118120087

    Article  Google Scholar 

  20. Iwaoka, H., Arita, M., Horita, Z.: Hydrogen diffusion in ultrafine-grained palladium: roles of dislocations and grain boundaries. Acta Mater. 107, 168–177 (2016). https://doi.org/10.1016/j.actamat.2016.01.069

    Article  Google Scholar 

  21. Sicking, G., Glugla, M., Huber, B.: Diffusion of tritium in cold-worked palladium. Phys. Chem. Chem. Phys. 87, 418–424 (1983). https://doi.org/10.1002/bbpc.19830870512

    Article  Google Scholar 

  22. Flanagan, T.B., Balasubramaniam, R., Kirchheim, R.: Exploring lattice defects in palladium and its alloys using hydrogen as a probe. Platin. Met. Rev. 45(3), 114–121 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Poletaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poletaev, G., Bebikhov, Y., Semenov, A., Rakitin, R. (2023). Molecular Dynamics Study of the Influence of Hydrogen Impurity on the Migration Velocity of [001] and [111] Tilt Boundaries in Palladium. In: Beskopylny, A., Shamtsyan, M., Artiukh, V. (eds) XV International Scientific Conference “INTERAGROMASH 2022”. INTERAGROMASH 2022. Lecture Notes in Networks and Systems, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-031-21219-2_314

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21219-2_314

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21218-5

  • Online ISBN: 978-3-031-21219-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics