Skip to main content

Simulation of a Cavity Ventilated by Air Displacement Using the Lattice Boltzmann Method

  • Conference paper
  • First Online:
Advanced Computational Techniques for Renewable Energy Systems (IC-AIRES 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 591))

  • 552 Accesses

Abstract

This work consists in numerically simulating a double diffusive mixed convection in a cavity ventilated by two diagonally opposed openings in the presence of a porous partition, fixed in the middle of its base and modeled by the Darcy-Brinkman-Forchheimer model. The right-side wall is brought to a constant warm temperature while the other walls are kept adiabatic. The Lattice Boltzmann method with a multiple relaxation time (MRT) is used for the mathematical resolution. The results are illustrated in terms of streamlines, isotherms and isoconcentrations as a function of different control parameters (Reynolds number, Rayleigh number) for a Darcy value Da = \({10}^{-6}\) and a height of the porous partition Hp = 0.6. The influence of these parameters on the depollution efficiency was also studied. It has been concluded that the optimal pollution efficiency is obtained at maximum Reynolds values related to the incoming air flow. Also, it was possible to approve the efficiency of the model proposed in this study to evacuate the maximum of heat and pollutants to decrease the ambient temperature as well as the concentration of pollutants. This study aims to provide guidelines to the building constructors in order to obtain a better air quality and ensure a good thermal comfort to the occupants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gan, G.: Impact of computational domain on the prediction of buoyancy-driven ventilation cooling. Build. Environ. 45(5), 1173–1183 (2010)

    Article  Google Scholar 

  2. Hireche, Z., Himrane, N., Nasseri, L., Hamrioui, Y., Ameziani, D.E.: Analysis of thermal performances in a ventilated room using LBM-MRT: effect of a porous separation. Computation 10(1) (2022)

    Google Scholar 

  3. Lage, J.L., Bejan, A., Anderson, R.: Efficiency of transient contaminant removal from a slot ventilated enclosure. Int. J. Heat Mass Transf. 34(10), 2603–2615 (1991)

    Article  Google Scholar 

  4. Lage, J.L., Bejan, A., Anderson, R.: Removal of contaminant generated by a discrete source in a slot ventilated enclosure. Int. J. Heat Mass Transf. 35(5), 1169–1180 (1992)

    Article  Google Scholar 

  5. Zhao, F.Y., Rank, E., Liu, D., Wang, H.Q., Ding, Y.L.: Dual steady transports of heat and moisture in a vent enclosure with all round states of ambient air. Int. J. Heat Mass Transf. 55(23–24), 6979–6993 (2012)

    Article  Google Scholar 

  6. Huang, R., Wu, H.: A modified multiple-relaxation-time lattice Boltzmann model for convection–diffusion equation. J. Comput. Phys. 274, 50–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mehrizi, A.A., Sedighi, K., Afrouzi, H.H., Aghili, A.L.: Lattice Boltzmann simulation of forced convection in vented cavity filled by porous medium with obstruction. World Appl. Sci. J. 16, 31–36 (2012)

    Google Scholar 

  8. Liu, Q., He, Y.L.: Multiple-relaxation-time lattice Boltzmann model for simulating double-diffusive convection in fluid-saturated porous media. Int. J. Heat Mass Transf. 127, 497–502 (2018)

    Article  Google Scholar 

  9. Mohamad, A.A.: Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Code. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arab, A., Himrane, N., Hireche, Z., Halouane, Y., Ameziani, D.E. (2023). Simulation of a Cavity Ventilated by Air Displacement Using the Lattice Boltzmann Method. In: Hatti, M. (eds) Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. Lecture Notes in Networks and Systems, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-031-21216-1_79

Download citation

Publish with us

Policies and ethics