Skip to main content

Diffusion MRI Fibre Orientation Distribution Inpainting

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2022)

Abstract

The analysis of diffusion weighted brain magnetic resonance images, including the estimation of fibre orientation distribution (FOD), tractography, and connectomics, is a powerful tool for neuroscience research and clinical applications. However, focal brain pathology and imaging acquisition artifacts affecting white matter tracts may disrupt or corrupt FOD values respectively, invalidating tractography and connectome reconstructions. In this work, we propose a 3D FOD inpainting framework, named order-wise coefficient estimation network (OCE-Net), to dynamically reconstruct the affected regions. Our feature encoding stage, based on gated convolutions, extracts features from all the input FOD coefficients and re-weights them using channel attention and independent order-wise decoders, to independently predict the coefficients for each spherical harmonic order. We evaluated our model on a subset of scans from the HCP dataset, and conducted tractography and connectomics to further analyse the impact of inpainting. Our experimental results, including a statistical analysis of the reconstructed connectomes, show that our OCE-Net approach can successfully reconstruct the original FODs in the focally disrupted regions.

Z. Tang and X. Wang—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The project page of this work is available at: https://mri-synthesis.github.io.

  2. 2.

    https://www.humanconnectome.org/.

References

  1. Andersson, J.L.R., Sotiropoulos, S.N.: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using gaussian processes. Neuroimage 122, 166–176 (2015)

    Article  Google Scholar 

  2. Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)

    Article  Google Scholar 

  3. Breuer, K., Stommel, M., Korte, W.: Analysis and evaluation of fiber orientation reconstruction methods. J. Compos. Sci. 3(3), 67 (2019)

    Article  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  6. Deslauriers-Gauthier, S., et al.: Edema-informed anatomically constrained particle filter tractography. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 375–382. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_43

    Chapter  Google Scholar 

  7. Dhollander, T., et al.: Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities. Neuroimage 241, 118417 (2021)

    Google Scholar 

  8. Dhollander, T., Connelly, A.: A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+ b = 0) diffusion MRI data. In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), vol. 24, p. 3010. Wiley Online Library (2016)

    Google Scholar 

  9. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)

    Google Scholar 

  11. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  12. Lipp, I., et al.: Tractography in the presence of multiple sclerosis lesions. Neuroimage 209, 116471 (2020)

    Google Scholar 

  13. Ma, Y., et al.: Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications. IEEE J. Biomed. Health Inform. 26(6), 2680–2692 (2022). https://doi.org/10.1109/JBHI.2022.3151741

  14. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  15. Smith, R., Skoch, A., Bajada, C.J., Caspers, S., Connelly, A.: Hybrid surface-volume segmentation for improved anatomically-constrained tractography. In: OHBM (2020)

    Google Scholar 

  16. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62(3), 1924–1938 (2012)

    Article  Google Scholar 

  17. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage 104, 253–265 (2015)

    Article  Google Scholar 

  18. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 338–351 (2015)

    Article  Google Scholar 

  19. Sotiropoulos, S.N., et al.: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using sense. Magn. Reson. Med. 70(6), 1682–1689 (2013)

    Article  Google Scholar 

  20. Storelli, L., Pagani, E., Preziosa, P., Filippi, M., Rocca, M.A.: Measurement of white matter fiber-bundle cross-section in multiple sclerosis using diffusion-weighted imaging. Mult. Scler. J. 27(6), 818–826 (2021)

    Article  Google Scholar 

  21. Tang, Z., Cabezas, M., Liu, D., Barnett, M., Cai, W., Wang, C.: LG-Net: lesion gate network for multiple sclerosis lesion inpainting. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 660–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_62

    Chapter  Google Scholar 

  22. Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  23. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Google Scholar 

  24. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  25. Tournier, J.D., Calamante, F., Connelly, A., et al.: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 1670. Wiley Online Library (2010)

    Google Scholar 

  26. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  27. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  28. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  29. Yeh, C.H., Smith, R.E., Dhollander, T., Calamante, F., Connelly, A.: Connectomes from streamlines tractography: assigning streamlines to brain parcellations is not trivial but highly consequential. Neuroimage 199, 160–171 (2019)

    Article  Google Scholar 

  30. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4471–4480 (2019)

    Google Scholar 

  31. Zeng, R., et al.: FOD-net: a deep learning method for fiber orientation distribution angular super resolution. Med. Image Anal. 79, 102431 (2022)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of an Australian Government Research Training Program (RTP) Scholarship. The authors acknowledge the funding support by the Australia Medical Research Future Fund under Grant (MRFFAI000085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihao Tang .

Editor information

Editors and Affiliations

Ethics declarations

Compliance with Ethical Standards

Data used in this work were obtained from the MGH-USC Human Connectome Project (HCP) database.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Z. et al. (2022). Diffusion MRI Fibre Orientation Distribution Inpainting. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics