Skip to main content

Lossy Compression of Multidimensional Medical Images Using Sinusoidal Activation Networks: An Evaluation Study

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13722))

Included in the following conference series:

Abstract

In this work, we evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets, with proof-of-concept application to 4D diffusion-weighted MRI (dMRI). In the medical imaging landscape, multidimensional MRI is a key area of research for developing biomarkers that are both sensitive and specific to the underlying tissue microstructure. However, the high-dimensional nature of these data poses a challenge in terms of both storage and sharing capabilities and associated costs, requiring appropriate algorithms able to represent the information in a low-dimensional space. Recent theoretical developments in deep learning have shown how periodic activation functions are a powerful tool for implicit neural representation of images and can be used for compression of 2D images. Here we extend this approach to 4D images and show how any given 4D dMRI dataset can be accurately represented through the parameters of a sinusoidal activation network, achieving a data compression rate about 10 times higher than the standard DEFLATE algorithm. Our results show that the proposed approach outperforms benchmark ReLU and Tanh activation perceptron architectures in terms of mean squared error, peak signal-to-noise ratio and structural similarity index. Subsequent analyses using the tensor and spherical harmonics representations demonstrate that the proposed lossy compression reproduces accurately the characteristics of the original data, leading to relative errors about 5 to 10 times lower than the benchmark JPEG2000 lossy compression and similar to standard pre-processing steps such as MP-PCA denosing, suggesting a loss of information within the currently accepted levels for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosman, P.C., et al.: Thoracic ct images: effect of lossy compression on diagnostic accuracy. Radiology 190 (1994)

    Google Scholar 

  2. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 58(3), 497–510 (2007)

    Article  Google Scholar 

  3. Deutsch, P.: Rfc 1951: Deflate compressed data format specification version 1.3 (1996)

    Google Scholar 

  4. Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: Coin: compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021)

  5. Dupont, E., Loya, H., Alizadeh, M., Goliński, A., Teh, Y.W., Doucet, A.: Coin++: Data agnostic neural compression. arXiv preprint arXiv:2201.12904 (2022)

  6. Jones, D.K., et al.: Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion mri. Neuroimage 182, 8–38 (2018)

    Article  Google Scholar 

  7. Ko, J.P., et al.: Wavelet compression of low-dose chest ct data: effect on lung nodule detection. Radiology 228(1), 70–75 (2003)

    Article  Google Scholar 

  8. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magnetic Resonance Imaging Official J. Int. Soc. Magnetic Resonance Med. 13(4), 534–546 (2001)

    Google Scholar 

  9. Lee, K.H., et al.: Irreversible jpeg 2000 compression of abdominal ct for primary interpretation: assessment of visually lossless threshold. Eur. Radiol. 17(6), 1529–1534 (2007)

    Article  Google Scholar 

  10. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)

    Google Scholar 

  11. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker, M.: Modulated periodic activations for generalizable local functional representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14214–14223 (2021)

    Google Scholar 

  12. Mirzaalian, H., et al.: Inter-site and inter-scanner diffusion mri data harmonization. Neuroimage 135, 311–323 (2016)

    Article  Google Scholar 

  13. Ohgiya, Y., et al.: Acute cerebral infarction: effect of jpeg compression on detection at ct. Radiology 227(1), 124–127 (2003)

    Article  Google Scholar 

  14. Palombo, M., et al.: Sandi: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion mri. Neuroimage 215, 116835 (2020)

    Article  Google Scholar 

  15. Pizzolato, M., et al.: Acquiring and predicting multidimensional diffusion (MUDI) data: an open challenge. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds.) Computational Diffusion MRI. MV, pp. 195–208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52893-5_17

    Chapter  Google Scholar 

  16. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  17. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Continuous 3d-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  18. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  19. Terae, S., et al.: Wavelet compression on detection of brain lesions with magnetic resonance imaging. J. Digit. Imaging 13(4), 178–190 (2000)

    Article  Google Scholar 

  20. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703.00395 (2017)

  21. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  22. Tournier, J.D., et al.: Mrtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  23. Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E.: Denoising of diffusion mri using random matrix theory. Neuroimage 142, 394–406 (2016)

    Article  Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Yamamoto, S., et al.: Evaluation of compressed lung ct image quality using quantitative analysis. Radiat. Med. 19(6), 321–342 (2001)

    Google Scholar 

  26. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

MM is supported by the Wellcome Trust through a Sir Henry Wellcome Postdoctoral Fellowship (213722/Z/18/Z). MP is supported by the UKRI Future Leaders Fellowship MR/T020296/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Palombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancini, M., Jones, D.K., Palombo, M. (2022). Lossy Compression of Multidimensional Medical Images Using Sinusoidal Activation Networks: An Evaluation Study. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics