Skip to main content

Time Series Predictive Models for Opponent Behavior Modeling in Bilateral Negotiations

  • Conference paper
  • First Online:
PRIMA 2022: Principles and Practice of Multi-Agent Systems (PRIMA 2022)

Abstract

In agent-based negotiations, it is crucial to understand the opponent’s behavior and predict its bidding pattern to act strategically. Foreseeing the utility of the opponent’s coming offer provides valuable insight to the agent so that it can decide its next move wisely. Accordingly, this paper addresses predicting the opponent’s coming offers by employing two deep learning-based approaches: Long Short-Term Memory Networks and Transformers. The learning process has three different targets: estimating the agent’s utility of the opponent’s coming offer, estimating the agent’s utility of that without using opponent-related variables, and estimating the opponent’s utility of that by using opponent-related variables. This work reports the performances of these models that are evaluated in various negotiation scenarios. Our evaluation showed promising results regarding the prediction performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our work, we consider five previous consecutive offer exchanges.

References

  1. Arslan, F., Aydogan, R.: An actor-critic reinforcement learning approach for bilateral negotiation. Turk. J. Electr. Eng. Comput. Sci. 1–20 (2022)

    Google Scholar 

  2. Aydoğan, R., et al.: Challenges and main results of the automated negotiating agents competition (ANAC) 2019. In: Bassiliades, N., Chalkiadakis, G., de Jonge, D. (eds.) EUMAS/AT -2020. LNCS (LNAI), vol. 12520, pp. 366–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66412-1_23

    Chapter  Google Scholar 

  3. Aydoğan, R., Festen, D., Hindriks, K.V., Jonker, C.M.: Alternating offers protocols for multilateral negotiation. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 153–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_10

    Chapter  Google Scholar 

  4. Baarslag, T., Hendrikx, M.J.C., Hindriks, K.V., Jonker, C.M.: Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques. Auton. Agent. Multi-Agent Syst. 30(5), 849–898 (2015). https://doi.org/10.1007/s10458-015-9309-1

    Article  Google Scholar 

  5. Chen, S., Ammar, H., Tuyls, K., Weiss, G.: Transfer learning for bilateral multi-issue negotiation. In: Proceedings of the BNAIC 2012, pp. 59–66 (2012)

    Google Scholar 

  6. Eran, C., Keskin, M.O., Cantürk, F., Aydoğan, R.: A decentralized token-based negotiation approach for multi-agent path finding. In: Rosenfeld, A., Talmon, N. (eds.) EUMAS 2021. LNCS (LNAI), vol. 12802, pp. 264–280. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82254-5_16

    Chapter  Google Scholar 

  7. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robot. Auton. Syst. 24(3), 159–182 (1998)

    Article  Google Scholar 

  8. Fatima, S., Kraus, S., Wooldridge, M.: Principles of Automated Negotiation. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  9. Hindriks, K., Jonker, C., Tykhonov, D.: Let’s dans! an analytic framework of negotiation dynamics and strategies. Web Intell. Agent Syst. 9, 319–335 (2011)

    Article  Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation (1997)

    Google Scholar 

  11. Keskin, M.O., Çakan, U., Aydoğan, R.: Solver agent: towards emotional and opponent-aware agent for human-robot negotiation. In: Proceedings of the AAMAS 2021, pp. 1557–1559. AAMAS 2021, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2021)

    Google Scholar 

  12. Li, M., Murukannaiah, P.K., Jonker, C.M.: A data-driven method for recognizing automated negotiation strategies. ArXiv abs/2107.01496 (2021)

    Google Scholar 

  13. Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K.V., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. 30(1), 48–70 (2014)

    Article  MathSciNet  Google Scholar 

  14. Marsa-Maestre, I., Klein, M., Jonker, C.M., Aydoğan, R.: From problems to protocols: towards a negotiation handbook. Decis. Support Syst. 60, 39–54 (2014)

    Article  Google Scholar 

  15. Sanchez-Anguix, V., Tunali, O., Aydoğan, R., Julián, V.: Can social agents efficiently perform in automated negotiation. Appl. Sci. 11(13), 6022 (2021)

    Article  Google Scholar 

  16. Sengupta, A., Mohammad, Y., Nakadai, S.: An autonomous negotiating agent framework with reinforcement learning based strategies and adaptive strategy switching mechanism. CoRR abs/2102.03588 (2021)

    Google Scholar 

  17. Tunalı, O., Aydoğan, R., Sanchez-Anguix, V.: Rethinking frequency opponent modeling in automated negotiation. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 263–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_16

    Chapter  Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017)

    Google Scholar 

  19. Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: Using gaussian processes to optimise concession in complex negotiations against unknown opponents. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 15–21 July 2011, pp. 432–438 (2011)

    Google Scholar 

  20. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series forecasting: the influenza prevalence case. CoRR (2020)

    Google Scholar 

  21. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gevher Yesevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yesevi, G., Keskin, M.O., Doğru, A., Aydoğan, R. (2023). Time Series Predictive Models for Opponent Behavior Modeling in Bilateral Negotiations. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds) PRIMA 2022: Principles and Practice of Multi-Agent Systems. PRIMA 2022. Lecture Notes in Computer Science(), vol 13753. Springer, Cham. https://doi.org/10.1007/978-3-031-21203-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21203-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21202-4

  • Online ISBN: 978-3-031-21203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics