Skip to main content

Generative Design in Architecture: From Mathematical Optimization to Grammatical Customization

  • Chapter
  • First Online:
Computational Design and Digital Manufacturing

Part of the book series: Management and Industrial Engineering ((MINEN))

  • 831 Accesses

Abstract

This chapter provides a methodological overview of generative design in architecture, especially highlighting the commonalities between three separate lineages of generative approaches in architectural design, namely the mathematical optimization methods for topology optimization and shape optimization, generative grammars (shape grammars and graph grammars), and [agent-based] design games. A comprehensive definition of generative design is provided as an umbrella term referring to the mathematical, grammatical, or gamified methodologies for systematic synthesis, i.e. derivation, itemization, or exploration of configurations. Among other points, it is shown that generative design methods are not necessarily meant to automate design but rather provide structured mechanisms to facilitate participatory design or creative mass customization. Effectively, the chapter provides the theoretical minimum for understanding generative design as a paradigm in computational design; demystifies the term generative design as a technological hype; shows a precis of the history of the generative approaches in architectural design; provides a minimalist methodological framework summarising lessons from the three lineages of generative design; and deepens the technological discourse on generative design methods by reflecting on the topological constructs and techniques required for devising generative systems or design machines, including those equipped with Artificial Intelligence. Moreover, the notions of discrete design and design for discrete assembly are discussed as precursors to the core concept of design as decision-making in generative design, thus hinting to avenues of future research in manufacturing-informed combinatorial mass customization and discrete architecture in tandem with generative design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon HA (2008) The sciences of the artificial, 3rd edn [Nachdr.]. MIT Press, Cambridge, MA

    Google Scholar 

  2. Dorst K (2003) The problem of design problems. Expert Des 135–147

    Google Scholar 

  3. Simon HA (1973) The structure of Ill structured P coblems. Artificial Intelligence 21

    Google Scholar 

  4. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127

    Article  Google Scholar 

  5. Schek H-J (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3(1):115–134

    Article  Google Scholar 

  6. Hillier B, Hanson J (1984) The social logic of space. https://doi.org/10.1017/CBO9780511597237

    Article  Google Scholar 

  7. Alexander C (1977) A pattern language: towns, buildings, construction. Oxford University Press

    Google Scholar 

  8. Stiny G, Gips J (1971) Shape grammars and the generative specification of painting and sculpture. In: Proceedings of the congress international federation for information processing 1971:1460–1465

    Google Scholar 

  9. Chomsky N (1957) Syntactic structures. Syntactic structures

    Google Scholar 

  10. Lindenmayer A (1968) Mathematical models for cellular interactions in development i. Filaments with one-sided inputs. J Theor Biol 18(3):280–299

    Google Scholar 

  11. Adamatzky A (2010) Game of life cellular automata. Springer

    Google Scholar 

  12. Wolfram S (1997) New kind of science

    Google Scholar 

  13. Mitchell WJ (1991) Functional grammars: an introduction. In: Reality and virtual reality: association for computer aided design in architecture conference proceedings 1991. University of California at Los Angeles, pp 167–176

    Google Scholar 

  14. Cagan J (2001) Engineering shape grammars: where we have been and where we are going. In: Formal engineering design synthesis. Cambridge University Press, pp 65–92

    Google Scholar 

  15. Shea K, Cagan J (1997) Innovative dome design: applying geodesic patterns with shape annealing. Artif Intell Eng Des Anal Manuf 11:379–394

    Article  Google Scholar 

  16. Shea K, Cagan J (1999) The design of novel roof trusses with shape annealing: assessing the ability of a computational method in aiding structural designers with varying design intent. Des Stud 20:3–23

    Article  Google Scholar 

  17. Simon HA (1997) Administrative behavior. Simon; Schuster

    Google Scholar 

  18. Epstein JM (2006) Generative social science: studies in agent-based computational modelling. Princeton University Press, Princeton

    MATH  Google Scholar 

  19. Batty M (1974) A theory of markovian design machines. Environ Plann B Plann Des. https://doi.org/10.1068/b010125

    Article  Google Scholar 

  20. Sanoff H (1979) Design games. W. Kaufmann

    Google Scholar 

  21. Friedman Y (1975) Toward a scientific architecture. First American. MIT Press, Cambridge, MA

    Google Scholar 

  22. Dorst K, Dijkhuis J (1995) Comparing paradigms for describing design activity. Des Stud 16:261–274

    Article  Google Scholar 

  23. Veloso P, Krishnamurti R (2020) An academy of spatial agents: generating spatial configurations with deep reinforcement learning

    Google Scholar 

  24. Ligtenberg A, Bregt AK, Van Lammeren R (2001) Multi-actor-based land use modelling: spatial planning using agents. Landsc Urban Plan 56:21–33

    Article  Google Scholar 

  25. König R (2011) Generating urban structures: a method for urban planning supported by multi-agent systems and cellular automata. Przestrzeń i Forma, 353–376

    Google Scholar 

  26. Azadi S, Nourian P (2021) GoDesign: a modular generative design framework for mass-customization and optimization in architectural design. In: Towards a new, configurable architecture. CUMINCAD, Novi Sad, Serbia, pp 285–294

    Google Scholar 

  27. Harding JE, Shepherd P (2017) Meta-parametric design. Des Stud 52:73–95

    Article  Google Scholar 

  28. Kroes P, Meijers A (2006) The dual nature of technical artefacts. Stud Hist Philos Sci 37:1–4

    Article  Google Scholar 

  29. Gero JS (1990) Design prototypes: a knowledge representation schema for design. AI Mag 11:26

    Google Scholar 

  30. Maher ML, Poon J (1996) Modeling design exploration as co-evolution. Comp-Aided Civil Infrastruct Eng 11:195–209

    Article  Google Scholar 

  31. Simon HA (2019) The sciences of the artificial, reissue of the third edition with a new introduction by john laird. MIT press

    Google Scholar 

  32. Gumin M (2016) Wave function collapse algorithm

    Google Scholar 

  33. Azadi S, Nourian P (2021) Collective intelligence in generative design: a human-centric approach towards scientific design. BouT: Periodical Build Tech Generative Design 76:7–16

    Google Scholar 

  34. March L, Matela R (1974) The animals of architecture: some census results on n-Omino populations for n = 6, 7, 8. Environ Plann B Plann Des 1:193–216

    Article  Google Scholar 

  35. March L (1998) [8+ (6)+ 11] = 25 + x. Environ Plann B Plann Des 25:10–19

    Article  Google Scholar 

  36. Retsin G (2019) Discrete: Reappraising the digital in architecture. Wiley

    Google Scholar 

  37. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602

  38. Bai N, Azadi S, Nourian P, Roders AP (2020) Decision-making as a social choice game. In: Proceedings of the 38th eCAADe Conference, p 10

    Google Scholar 

  39. Linkwitz K (2014) Force density method: design of a timber shell (Chapter 6). In: Adriaenssens S, Block P, Veenendaal D, Williams C (eds) Shell structures for architecture. Routledge, pp 73–84

    Google Scholar 

  40. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, Leaver-Fay A, Baker D, Popović Z, Players F, (2010) Predicting protein structures with a multiplayer online game. Nature 466:756–760

    Google Scholar 

  41. Shea K, Cagan J, Fenves SJ (1997) A shape annealing approach to optimal truss design with dynamic grouping of members. J Mech Des 119:388–394

    Article  Google Scholar 

  42. Lógó J, Ismail H (2020) Milestones in the 150-year history of topology optimization: a review. Comp Assis Methods Eng Sci 27:97–132

    Google Scholar 

  43. Sorkine O (2005) Laplacian mesh processing. Eurographics (State of the Art Reports) 4

    Google Scholar 

  44. Levy B (2006) Laplace-Beltrami Eigenfunctions Towards an Algorithm That “Understands” Geometry. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06). IEEE, Matsushima, Japan, pp 13–13

    Google Scholar 

  45. Jordan T, Tanigawa S (2021) Rigidity of random subgraphs and eigenvalues of stiffness matrices, 31

    Google Scholar 

  46. Barnes MR (1988) Form-finding and analysis of prestressed nets and membranes. Comput Struct 30:685–695

    Article  Google Scholar 

  47. Barnes MR (1999) Form finding and analysis of tension structures by dynamic relaxation. Int J Space Struct 14:89–104

    Article  Google Scholar 

  48. Veenendaal D, Block P (2012) An overview and comparison of structural form finding methods for general networks. Int J Solids Struct 49:3741–3753

    Article  Google Scholar 

  49. Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M (2012) Shape-up: shaping discrete geometry with projections. Comp Graph Forum 31:1657–1667

    Article  Google Scholar 

  50. Bouaziz S, Martin S, Liu T, Kavan L, Pauly M (2014) Projective dynamics: fusing constraint projections for fast simulation. Asso Comp Mach Trans Graph 33:154

    MATH  Google Scholar 

  51. Takahashi K, Ney L (2018) Advanced form finding by constraint projection for structural equilibrium with design constraints. In: Proceedings of IASS Annual Symposia. Boston, pp 1–8

    Google Scholar 

  52. Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. J Inter Assoc Shell and Spatial Struct 48:8

    Google Scholar 

  53. Konstantatou M (2019) Geometry-based structural analysis and design via discrete stress functions. https://doi.org/10.17863/CAM.50698

    Article  Google Scholar 

  54. Yago Llamas D (2022) A new computational approach to topology optimization in solid mechanics problems. PhD thesis, Universitat Politècnica de Catalunya

    Google Scholar 

  55. Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidisc Optim 50:1175–1196

    Article  Google Scholar 

  56. Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90–108

    Article  Google Scholar 

  57. Bendsøe MP, Sigmund O (2004) Topology optimization. https://doi.org/10.1007/978-3-662-05086-6

    Article  Google Scholar 

  58. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim 43:1–16

    Article  MATH  Google Scholar 

  59. Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21:80–83

    Article  Google Scholar 

  60. Mattheck C, Burkhardt S, Erb D (1991) Shape optimization of engineering components by adaptive biological growth. In: Engineering optimization in design processes. Springer, pp 15–24

    Google Scholar 

  61. Mattheck C (1998) Design in nature. https://doi.org/10.1007/978-3-642-58747-4

    Article  Google Scholar 

  62. Xie Y, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of the international conference on computational engineering science

    Google Scholar 

  63. Xie YM, Steven GP (1997) Basic evolutionary structural optimization. In: Evolutionary structural optimization. Springer, pp 12–29

    Google Scholar 

  64. O’Shaughnessy C, Masoero E, Gosling PD (2021) Topology optimization using the discrete element method. Part 1: Methodology, Validation, and Geometric Nonlinearity. https://doi.org/10.31224/osf.io/c6ymn

  65. Fairclough HE, He L, Pritchard TJ, Gilbert M (2021) LayOpt: an educational web-app for truss layout optimization. Struct Multidisc Optim 64:2805–2823

    Article  Google Scholar 

  66. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Meth Engng 24:359–373

    Article  MATH  Google Scholar 

  67. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573

    Article  MATH  Google Scholar 

  68. Darmon I (2018) Voxel computational morphogenesis in urban context: proposition and analysis of rules-based generative algorithms considering solar access. In: Proceedings of the Conference on Advanced Building Skins: Bern, Switzerland, pp 26–27

    Google Scholar 

  69. Peng C-H, Yang Y-L, Bao F, Fink D, Yan D-M, Wonka P, Mitra NJ (2016) Computational network design from functional specifications. ACM Trans Graph 35:131:1–131:12

    Google Scholar 

  70. Arvin SA, House DH (1999) Making designs come alive: using physically based modeling techniques in space layout planning. In: Augenbroe G, Eastman C (eds) Computers in building. Springer, US, Boston, MA, pp 245–262

    Chapter  Google Scholar 

  71. Zawidzki M, Tateyama K, Nishikawa I (2011) The constraints satisfaction problem approach in the design of an architectural functional layout. Eng Optim 43:943–966

    Article  Google Scholar 

  72. Lobos D, Donath D (2010) The problem of space layout in architecture: a survey and reflections. Arq 6:136–161

    Google Scholar 

  73. Liggett RS (2000) Automated facilities layout: past, present and future. Autom Constr 9:197–215

    Article  Google Scholar 

  74. Liggett RS, Mitchell WJ (1981) Optimal space planning in practice. Comput Aided Des 13:277–288

    Article  Google Scholar 

  75. Saha PK, Borgefors G, di Baja GS (2016) A survey on skeletonization algorithms and their applications. Pattern Recogn Lett 76:3–12

    Article  Google Scholar 

  76. Zawidzki M (2016) Discrete optimization in architecture: architecture & urban layout. https://doi.org/10.1007/978-981-10-1106-1

    Article  Google Scholar 

  77. Wu W, Fan L, Liu L, Wonka P (2018) MIQP-based layout design for building interiors. Comp Graph Forum 37:511–521

    Article  Google Scholar 

  78. Hua H, Hovestadt L, Tang P, Li B (2019) Integer programming for urban design. Eur J Oper Res 274:1125–1137

    Article  MATH  Google Scholar 

  79. Xie YM (2022) Generalized topology optimization for architectural design. ARIN 1:2

    Article  Google Scholar 

  80. Hofmeyer H, Schevenels M, Boonstra S (2017) The generation of hierarchic structures via robust 3D topology optimisation. Adv Eng Inform 33:440–455

    Article  Google Scholar 

  81. van Dijk F (2020) Topology optimization as architectural form finding: using structural topology optimization to generate architectural geometry. MSc Thesis in Building Technology, TU Delft

    Google Scholar 

  82. Florou A (2021) Generative solar-climatic configuration: a model for feed-forward optimization of building envelopes as to solar energy potential. MSc Thesis in Building Technology

    Google Scholar 

  83. Chomsky N (1956) Three models for the description of language. IRE Trans Info Theory 2:113–124

    Article  MATH  Google Scholar 

  84. Stiny G (2006) Shape: talking about seeing and doing. MIT Press

    Google Scholar 

  85. Prusinkiewicz P, Lindenmayer A (2012) The algorithmic beauty of plants. https://doi.org/10.1007/978-1-4613-8476-2

    Article  Google Scholar 

  86. Goldman R, Schaefer S, Ju T (2004) Turtle geometry in computer graphics and computer-aided design. Comput Aided Des 36:1471–1482

    Article  Google Scholar 

  87. Kobayashi MH (2010) On a biologically inspired topology optimization method. Commun Nonlinear Sci Numer Simul 15:787–802

    Article  MATH  Google Scholar 

  88. Bielefeldt BR, Akleman E, Reich GW, Beran PS, Hartl DJ (2019) L-system-generated mechanism topology optimization using graph-based interpretation. J Mech Robot 11:020905

    Article  Google Scholar 

  89. Garcia S (2017) Classifications of shape grammars. In: Design computing and cognition’16. Springer, pp 229–248

    Google Scholar 

  90. Knight T, Stiny G (2015) Making grammars: from computing with shapes to computing with things. Des Stud 41:8–28

    Article  Google Scholar 

  91. Stiny G, Mitchell WJ (1978) The palladian grammar. Environ Plann B Plann Des 5:5–18

    Article  Google Scholar 

  92. Koning H, Eizenberg J (1981) The language of the prairie: Frank lloyd wright’s prairie houses. Environ Plann B Plann Des 8:295–323

    Article  Google Scholar 

  93. Flemming U (1987) More than the sum of parts: the grammar of queen anne houses. Environ Plann B Plann Des 14:323–350

    Article  Google Scholar 

  94. Li AI et al (2001) A shape grammar for teaching the architectural style of the yingzao fashi. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  95. Duarte JP (2005) A discursive grammar for customizing mass housing: the case of siza’s houses at malagueira. Autom Constr 14:265–275

    Article  Google Scholar 

  96. Duarte JP, Ducla-Soares G, Caldas LG, Rocha J (2006) An urban grammar for the medina of marrakech. In: Design computing and cognition’06. Springer, pp 483–502

    Google Scholar 

  97. Beirão JN, Duarte JP, Stouffs R (2011) Creating specific grammars with generic grammars: towards flexible urban design. Nexus Netw J 13:73–111

    Article  Google Scholar 

  98. Knight TW (1980) The generation of hepplewhite-style chair-back designs. Environ Plann B Plann Des 7:227–238

    Article  Google Scholar 

  99. Agarwal M, Cagan J (1998) A blend of different tastes: the language of coffeemakers. Environ Plann B Plann Des 25:205–226

    Article  Google Scholar 

  100. McCormack JP, Cagan J, Vogel CM (2004) Speaking the Buick language: Capturing, understanding, and exploring brand identity with shape grammars. Des Stud 25:1–29

    Article  Google Scholar 

  101. Costa EC e, Duarte JP (2013) Mass customization of ceramic tableware through digital technology. Green Design, Materials and Manufacturing Processes, 467–471

    Article  Google Scholar 

  102. Eloy S, Duarte JP (2011) A transformation grammar for housing rehabilitation. Nexus Netw J 13:49–71

    Article  Google Scholar 

  103. Baldock R, Shea K, Eley D (2005) Evolving optimized braced steel frameworks for tall buildings using modified pattern search. Computing Civil Eng. https://doi.org/10.1061/40794(179)60

  104. Baldock R (2007) Structural optimisation in building design practice: case-studies in topology optimisation of bracing systems. PhD thesis, University of Cambridge

    Google Scholar 

  105. Geyer P (2008) Multidisciplinary grammars supporting design optimization of buildings. Res Eng Design 18:197–216

    Article  Google Scholar 

  106. Mueller CT (2014) Computational exploration of the structural design space. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  107. Sass L (2006) A wood frame grammar: a generative system for digital fabrication. Int J Archit Comput 4:51–67

    Google Scholar 

  108. Ertelt C, Shea K (2009) Generative design and CNC fabrication using shape grammars. In: ASME 2008 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers Digital Collection, pp 25–34

    Google Scholar 

  109. Lee J, Mueller C, Fivet C (2016) Automatic generation of diverse equilibrium structures through shape grammars and graphic statics. Int J Space Struct 31:147–164

    Article  Google Scholar 

  110. Lee J, Meled TV, Block P (2016) Form-finding explorations through geometric transformations and modifications of force polyhedrons. In: Proceedings of the annual symposium of the international association for shell and spatial structures 2016

    Google Scholar 

  111. Hansmeyer M, Dillenburger B (2013) Mesh grammars. In: Stouffs R, Janssen P, Roudavski S, Tunçer B (eds) Conference on computer-aided architectural design research in Asia, pp 821–829

    Google Scholar 

  112. Daniels J, Silva CT, Shepherd J, Cohen E (2008) Quadrilateral mesh simplification. Assoc Comp Mach Trans Graph 27:148

    Google Scholar 

  113. Daniels J II, Silva CT, Cohen E (2009) Localized quadrilateral coarsening. Comp Graph Forum 28:1437–1444

    Article  Google Scholar 

  114. Tarini M, Pietroni N, Cignoni P, Panozzo D, Puppo E (2010) Practical quad mesh simplification. Comp Graph Forum 29:407–418

    Article  Google Scholar 

  115. Peng C-H, Zhang E, Kobayashi Y, Wonka P (2011) Connectivity editing for quadrilateral meshes. Assoc Comp Mac Trans Graph 30:141

    Google Scholar 

  116. Nasri A, Sabin M, Yasseen Z (2009) Filling n-sided regions by quad meshes for subdivision surfaces. Comp Graph Forum 28:1644–1658

    Article  Google Scholar 

  117. Takayama K, Panozzo D, Sorkine-Hornung O (2014) Pattern-based quadrangulation for N-sided patches. In: Proceedings of the symposium on geometry processing 2014. Eurographics Association, pp 177–184

    Google Scholar 

  118. Peng C-H, Barton M, Jiang C, Wonka P (2014) Exploring quadrangulations. Assoc Comp Mac Trans Graph 33:12

    MATH  Google Scholar 

  119. Conway JH, Burgiel H, Goodman-Strauss C (2016) The symmetries of things. CRC Press

    Book  MATH  Google Scholar 

  120. Shepherd P, Pearson W (2013) Topology optimisation of algorithmically generated space frames. In: Proceedings of the annual symposium of the international association for shell and spatial structures 2013

    Google Scholar 

  121. Koronaki A, Shepherd P, Evernden M (2017) Layout optimization of space frame structures. In: Proceedings of the annual symposium of the international association for shell and spatial structures 2017

    Google Scholar 

  122. Malek S, Williams C (2013) Structural implications of using cairo tiling and hexagons in gridshells. In: Proceedings of the annual symposium of the international association for shell and spatial structures 2013

    Google Scholar 

  123. Jiang C, Tang C, Vaxman A, Wonka P, Pottmann H (2015) Polyhedral patterns. Assoc Comp Mach Trans Graph 34:172

    Google Scholar 

  124. Mesnil R, Douthe C, Baverel O (2017) Non-standard patterns for gridshell structures: fabrication and structural optimization. J Inter Assoc Shell Spatial Struct 58:277–286

    Google Scholar 

  125. Oval R (2019) Topology finding of patterns for structural design. PhD thesis, Université Paris-Est

    Google Scholar 

  126. Heisserman L (1994) Generative geometric design. IEEE Comput Graphics Appl 14:37–45

    Article  Google Scholar 

  127. Abt CC (1987) Serious games. University Press of America

    Google Scholar 

  128. Zeigler BP, Herbert Praehofer BPZTGK, Coaut PH, Kim TG, Praehofer H, coaut KTG (2000) Theory of modeling and simulation

    Google Scholar 

  129. Grogan PT, Meijer SA (2017) Gaming methods in engineering systems research. Syst Eng 20:542–552

    Article  Google Scholar 

  130. Duke RD, Geurts J (2004) Policy games for strategic management. Dutch University Press

    Google Scholar 

  131. Harteveld C, Guimarães R, Mayer IS, Bidarra R (2009) Balancing play, meaning and reality: the design philosophy of Levee Patroller. Simul Gaming 41:316–340

    Article  Google Scholar 

  132. Iwasaki Y, Simon HA (1994) Causality and model abstraction. Artif Intell 67:143–194

    Article  MATH  Google Scholar 

  133. Hirschi N, Frey D (2002) Cognition and complexity: an experiment on the effect of coupling in parameter design. Res Eng Design 13:123–131

    Article  Google Scholar 

  134. Shakeri M (2022) Unstable wormholes: communications between urban planning and game studies. Urban Planning. https://doi.org/10.17645/up.v7i2.4953

    Article  Google Scholar 

  135. Jahangirian M, Eldabi T, Naseer A, Stergioulas LK, Young T (2010) Simulation in manufacturing and business: a review. Eur J Oper Res 203:1–13

    Article  Google Scholar 

  136. Charsky D (2010) From edutainment to serious games: a change in the use of game characteristics. Games Cult 5:177–198

    Article  Google Scholar 

  137. Moloney J, Globa A, Wang R, Roetzel A (2017) Serious games for integral sustainable design: Level 1. Procedia Engineering 180:1744–1753

    Article  Google Scholar 

  138. Savery JR, Duffy TM (1995) Problem based learning: an instructional model and its constructivist framework. Educ Tech Archive 35:31–38

    Google Scholar 

  139. Roungas B, Verbraeck A, Meijer S (2018) The future of contextual knowledge in gaming simulations: a research agenda. In: 2018 winter simulation conference (WSC). pp 2435–2446

    Google Scholar 

  140. Wright W (1989) SimCity [computer software]. Maxis, Moraga, CA

    Google Scholar 

  141. Roumpani F (2022) Procedural cities as active simulators for planning. Urban Planning 7:321–329

    Article  Google Scholar 

  142. Sánchez JLS (2015) Block’hood—developing an architectural simulation video game

    Google Scholar 

  143. Bekebrede G, Mayer I (2006) Build your seaport in a game and learn about complex systems. J Des Res 5:273

    Article  Google Scholar 

  144. van Luipen J, Meijer S (2012) Uploading to the MATRICS: combining simulation and serious gaming in railway simulators. In: Wilson JR, Mills A, Clarke T, Rajan J, Dadashi N (eds) Rail human factors around the world, pp 165–177

    Google Scholar 

  145. Sušnik J, Chew C, Domingo X, Mereu S, Trabucco A, Evans B, Vamvakeridou-Lyroudia L, Savić D, Laspidou C, Brouwer F (2018) Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach. Water 10:139

    Article  Google Scholar 

  146. Grogan PT (2014) Interoperable simulation gaming for strategic infrastructure systems design. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  147. Savov A, Tessmann O, Nielsen SA (2016) Sensitive assembly: gamifying the design and assembly of façade wall prototypes. Int J Archit Comput 14:30–48

    Google Scholar 

  148. Lin Y-C, Chen Y-P, Yien H-W, Huang C-Y, Su Y-C (2018) Integrated BIM, game engine and VR technologies for healthcare design: a case study in cancer hospital. Adv Eng Inform 36:130–145

    Article  Google Scholar 

  149. Raghothama J, Hauge JB, Meijer S (2022) Curating player experience through simulations in city games. Urban Planning. https://doi.org/10.17645/up.v7i2.5031

    Article  Google Scholar 

  150. Hauge JB, Carretero MR, Kodjabachian J, Meijer S, Raghothama J, Duqueroie B (2016) ProtoWorld a simulation based gaming environment to model and plan urban mobility. In: Lecture notes in computer science. Springer International Publishing, pp 393–400

    Google Scholar 

  151. Chakraborty N, Haworth B, Usman M, Berseth G, Faloutsos P, Kapadia M (2017) Crowd sourced co-design of floor plans using simulation guided games. In: Proceedings of the tenth international conference on motion in games. https://doi.org/10.1145/3136457.3136463

  152. Khoury M, Gibson MJ, Savic D, Chen AS, Vamvakeridou-Lyroudia L, Langford H, Wigley S (2018) A serious game designed to explore and understand the complexities of flood mitigation options in urbanrural catchments. Water 10:1885

    Google Scholar 

  153. Lim SJ, Vasilatou V, Wuu SH (2020) The use of CA to generate informal architectural systems. In: Proceedings of the 11th annual symposium on simulation for architecture and urban design, pp 1–8

    Google Scholar 

  154. Soman A, Azadi S, Nourian P (2022) DeciGenArch: a generative design methodology for architectural configuration via multi-criteria decision analysis. In: Proceedings of eCAADe 2022. Education; research in Computer Aided Architectural Design in Europe, p forthcoming

    Google Scholar 

  155. Veloso PJR, RK (2019) Multi-agent space planning: a literature review (2008–2017). In: Lee J-H (eds) Hello, Culture! [18th International Conference, CAAD Futures 2019, Proceedings. ISBN 978-8-89453-05-5. Daejeon, Korea, pp 52–74

    Google Scholar 

  156. Savov A, Tessmann O (2017) Introduction to playable voxel-shape grammars. ACADIA proceedings. https://doi.org/10.52842/conf.acadia.2017.534

    Article  Google Scholar 

  157. Savov A, Buckton B, Tessmann O (2016) 20,000 blocks: can gameplay be used to guide non-expert groups in creating architecture? ACADIA Proceed. https://doi.org/10.52842/conf.acadia.2016.024

    Article  Google Scholar 

  158. Kelly G, McCabe H (2006) A survey of procedural techniques for city generation. ITB J 14:342–351

    Google Scholar 

  159. Parish YIH, Müller P (2001) Procedural modeling of cities. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. SIGGRAPH 1. https://doi.org/10.1145/383259.383292

  160. Duering S, Chronic A, Koenig R (2020) Optimizing urban systems: integrated optimization of spatial configurations. In: Proceedings of the 11th annual symposium on simulation for architecture and urban design, pp 1–7

    Google Scholar 

  161. Lu SC-Y, Elmaraghy W, Schuh G, Wilhelm R (2007) A scientific foundation of collaborative engineering. CIRP Ann 56:605–634

    Article  Google Scholar 

  162. Yenardi A, Janssen P (2021) Mass participatory design on the web: a voxel-based 3D modelling approach

    Google Scholar 

  163. Nourian P (2016) Configraphics: graph theoretical methods for design and analysis of spatial configurations. https://doi.org/10.7480/isbn.9789461867209

  164. Regenwetter L, Ahmed F (2022) Towards goal, feasibility, and diversity-oriented deep generative models in design

    Google Scholar 

  165. Regenwetter L, Nobari AH, Ahmed F (2022) Deep generative models in engineering design: a review. J Mech Des 144:071704

    Article  Google Scholar 

  166. Conti ZX, Kaijima S (2021) Explainable ML: augmenting the interpretability of numerical simulation using bayesian networks. The routledge companion to artificial intelligence in architecture. Routledge, pp 315–335

    Google Scholar 

  167. Bhatt M, Freksa C (2015) Spatial computing for design—an artificial intelligence perspective. In: Gero JS (ed) Studying visual and spatial reasoning for design creativity. Springer, Netherlands, Dordrecht, pp 109–127

    Chapter  Google Scholar 

  168. Marin R, Rampini A, Castellani U, Rodolà E, Ovsjanikov M, Melzi S (2021) Spectral shape recovery and analysis via data-driven connections. Int J Comput Vis 129:2745–2760

    Article  Google Scholar 

  169. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan kaufmann

    Google Scholar 

  170. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  171. Montavon G, Orr GB, Müller K-R (eds) (2012) Neural networks: tricks of the trade, 2nd edn. https://doi.org/10.1007/978-3-642-35289-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirouz Nourian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nourian, P., Azadi, S., Oval, R. (2023). Generative Design in Architecture: From Mathematical Optimization to Grammatical Customization. In: Kyratsis, P., Manavis, A., Davim, J.P. (eds) Computational Design and Digital Manufacturing. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-21167-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21167-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21166-9

  • Online ISBN: 978-3-031-21167-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics