Skip to main content

Abstract

Generating function is a mathematical technique to concisely represent a known ordered sequence into a simple algebraic function. In essence, it takes a sequence as input, and produces a continuous function in one or more dummy (arbitrary) variables as output. A sequence is an ordered succession of elements which may be finite or infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Analysis of algorithms is used to either select an algorithm with minimal run time from a set of possible choices, or minimum storage or network communication requirements. As the attribute of interest is time, the recurrences are developed as T(n) where n is the problem size. This is one of the reasons for choosing a dummy variable other than t.

  2. 2.

    Note that the \(n^{th}\) derivative of \(1/(1-x)\) is \(n!/(1-x)^{n+1}\) and that of \(1/(1-ax)^b\) is \((n+b-1)! a^n/[(b-1)! (1-ax)^{b+n}]\).

  3. 3.

    The sequence \(\sum _{n\ge 0}n!x^n\) converges only at \(x=0\).

  4. 4.

    Some authors define it in the complex domain as \(\sum _{n=1}^\infty a_n [\exp (i\theta _n)]^{-s}\).

References

  • Basant, Z. P., & Wu, S. T. (1973). Dirichlet series creep function for aging concrete. Journal of the Engineering Mechanics Division, 99(2) (1973). https://doi.org/10.1061/JMCEA3.0001741.

  • Bona, M. (2012). Combinatorics of permutations (2nd edn.) CRC Press.

    Google Scholar 

  • Boyadzhiev, K. N. (2016). Lah numbers, Laguerre polynomials of order negative one, and the n-th derivative of exp(1/x). Acta University Sapientiae, Mathematica, 8(1), 22–31. https://doi.org/10.1515/ausm-2016-0002.

    Article  MathSciNet  MATH  Google Scholar 

  • Chattamvelli, R., & Jones, M. C. (1995). Recurrence relations for noncentral density, distribution functions, and inverse moments. Journal of Statistical Computation and Simulation, 52(3), 289–299. https://doi.org/10.1080/00949659508811679.

    Article  MathSciNet  MATH  Google Scholar 

  • Daboul, S., et al. (2013). The Lah numbers and the n-th derivative of \(\exp (1/x)\). Mathematics Magazine, 86(1), 39–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Feiler, C., & Schleich, W. P. (2015). Dirichlet series as interfering probability amplitudes for quantum measurements. New Journal of Physics, 17, 063040. https://iopscience.iop.org/article/10.1088/1367-2630/17/6/063040.

  • Ghosal, S. K., Mukhopadhyay, S., Hossain, S., & Sarkar, R. (2020). Application of Lah transform for security and privacy of data through information hiding in telecommunication. In Transactions on Emerging Telecommunications Technologies (pp. 1–20). Wiley. https://doi.org/10.1002/ett.3984.

  • Hartleb, D., Ahrens, A., Purvinis, O., & Zascerinska, J. (2020). Analysis of free time intervals between buyers at cash register using generating functions. Proceedings of the 10th international conference on pervasive and parallel computing: Communication and sensors (PECCS2020) (pp. 42–49). ISBN: 978-989-758-4770.

    Google Scholar 

  • Knuth, D. E. (1998). Fundamental algorithms (Vol. 2). Boston: Addison Wesley.

    Google Scholar 

  • Lah, I. (1955). Eine neue art von zahlen, hire eigenschaftern and anwendung in Der mathematischen statistic. Mitteilungsblatt Mathematics Status, 7, 203–216.

    Google Scholar 

  • Nkonkobe, S., & Murali, V. (2017). A study of a family of generating functions of Nelsen-Schmidt type and some identities on restricted barred preferential arrangements. Discrete Mathematics, 340(5), 1122–1128. https://doi.org/10.1016/j.disc.2016.11.010.

  • Riordan, J. (1979). Combinatorial identities. New York: Wiley.

    MATH  Google Scholar 

  • Sedgewick, R., & Flajolet, P. (2013). An introduction to the analysis of algorithms. MA: Addison-Wesley.

    MATH  Google Scholar 

  • Shishebor, Z., Nematollahi, A. R., & Soltani1, A. R. (2006). On covariance generating functions and spectral densities of periodically correlated autoregressive processes. Journal of Applied Mathematics and Stochastic Analysis, 2006, Article ID 94746. https://www.hindawi.com/journals/ijsa/2006/094746/ref/.

  • van Lint, J. H. (1999). Introduction to coding theory. Springer.

    Google Scholar 

  • Zhang, J., Fan, R, & Shen, F. (2021). New method for the computation of generating functions with applications. In 2021 international conference on computational science and computational intelligence (CSCI). Las Vegas, NV, USA: IEEE. https://doi.org/10.1109/CSCI54926.2021.00156.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Chattamvelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chattamvelli, R., Shanmugam, R. (2023). Types of Generating Functions. In: Generating Functions in Engineering and the Applied Sciences. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-21143-0_1

Download citation

Publish with us

Policies and ethics