Skip to main content

The Vertex-Edge Separator Transformation Problem in Network-Dismantling

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1078))

Included in the following conference series:

  • 1617 Accesses

Abstract

In complex networks, network-dismantling aims at finding an optimal set of nodes (or edges) such that the removal of the set from the network will lead to the disintegration of the network, that is, the size of the giant/largest connected component is not bigger than a specific threshold (for instance, \(1\%\) of the original network size). Existing algorithms addressing this topic can be divided into two closely related but different categories: vertex separator-oriented algorithms and edge separator-oriented algorithms. There has been a lot of research on these two categories, respectively. However, to the best of our knowledge, less attention has been paid to the relation between the vertex separator and edge separator. In this paper, we studied the separator transformation (ST) problem between the separator of the vertexes and edges. We approximated the transformation from edge separator to vertex separator using Vertex Cover algorithm, while approximated the transformation from vertex separator to edge separator using an Explosive Percolation (EP) approach. Moreover, we further analyzed the results of the vertex-edge separator transformation through the explosive percolation method in detail. The transformation problem in network-dismantling opens up a new direction for understanding the role of the vital nodes set and edges set as well as the vulnerability of complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.-L.: Network Science. Cambridge University Press (2016)

    Google Scholar 

  2. Newman, M.E.J.: Networks. Oxford University Press (2018)

    Google Scholar 

  3. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002)

    Article  Google Scholar 

  4. Gladwell, M.: The Tipping Point: How Little Things can Make a Big Difference. Little, Brown (2006)

    Google Scholar 

  5. Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  Google Scholar 

  6. Jiang, J., Huang, Z.-G., Seager, T.P., Lin, W., Grebogi, C., Hastings, A., Lai, Y.-C.: Predicting tipping points in mutualistic networks through dimension reduction. Proc. Nat. Acad. Sci. U.S.A. 115(4), E639–E647 (2018)

    Article  MATH  Google Scholar 

  7. Liu, X., Li, D., Ma, M., Szymanski, B.K., Stanley, H.E., Gao, J.: Network resilience. Phys. Rep. 971, 1–108 (2022)

    Article  MATH  Google Scholar 

  8. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  9. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65–68 (2015)

    Article  Google Scholar 

  10. Liu, Y.-Y., Barabási, A.-L.: Control principles of complex systems. Rev. Mod. Phys. 88(3), 035006 (2016)

    Article  Google Scholar 

  11. Amani, A.M., Jalili, M., Yu, X., Stone, L.: Controllability of complex networks: choosing the best driver set. Phys. Rev. E 98(3), 030302 (2018)

    Article  Google Scholar 

  12. Zhang, Y., Garas, A., Schweitzer, F.: Control contribution identifies top driver nodes in complex networks. Advan. Complex Syst. 22(07n08), 1950014 (2019)

    Google Scholar 

  13. Del Ferraro, G., Moreno, A., Min, B., Morone, F., Pérez-Ramírez, Ú., Pérez-Cervera, L., Parra, L.C., Holodny, A., Canals, S., Makse, H.A.: Finding influential nodes for integration in brain networks using optimal percolation theory. Nat. Commun. 9(1), 2274 (2018)

    Article  Google Scholar 

  14. Tahmassebi, A., Amani, A.M., Pinker-Domenig, K., Meyer-Baese, A.: Determining disease evolution driver nodes in dementia networks. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10578, p. 1057829. International Society for Optics and Photonics (2018)

    Google Scholar 

  15. Janson, S., Thomson, A.: Dismantling sparse random graphs. Comb. Probab. Comput. 17(2), 259–264 (2008)

    Article  MATH  Google Scholar 

  16. Braunstein, A., Dall’Asta, L., Semerjian, G., Zdeborová, L.: Network dismantling. Proc. Nat. Acad. Sci. U.S.A. 113(44), 12368–12373 (2016)

    Article  Google Scholar 

  17. Ren, X.-L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Nat. Acad. Sci. U.S.A. 116(14), 6554–6559 (2019)

    Article  MATH  Google Scholar 

  18. Fan, C., Zeng, L., Sun, Y., Liu, Y.-Y.: Finding key players in complex networks through deep reinforcement learning. In: Nature Machine Intelligence, pp. 1–8 (2020)

    Google Scholar 

  19. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  20. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)

    Article  Google Scholar 

  21. Zdeborová, L., Zhang, P., Zhou, H.-J.: Fast and simple decycling and dismantling of networks. Sci. Rep. 6, 37954 (2016)

    Article  Google Scholar 

  22. Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)

    Article  Google Scholar 

  23. Altarelli, F., Braunstein, A., Dall’Asta, L., Wakeling, J.R., Zecchina, R.: Containing epidemic outbreaks by message-passing techniques. Phys. Rev. X 4(2), 21024 (2014)

    Google Scholar 

  24. Mugisha, S., Zhou, H.-J.: Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 94, 012305 (2016)

    Article  Google Scholar 

  25. Qin, S.-M., Ren, X.-L., Lü, L.: Efficient network dismantling via node explosive percolation. Commun. Theor. Phys. 71(6), 764 (2019)

    Article  MATH  Google Scholar 

  26. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

    Article  MATH  Google Scholar 

  27. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. J. ACM (JACM) 56(2), 1–37 (2009)

    Article  MATH  Google Scholar 

  28. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)

    Article  MATH  Google Scholar 

  29. Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19(3), 701–719 (1998)

    Article  MATH  Google Scholar 

  30. Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nat. Commun. 12(1), 1–10 (2021)

    Article  Google Scholar 

  31. Bichot, C.-E., Siarry, P.: Graph Partitioning. Wiley (2013)

    Google Scholar 

  32. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering, pp. 117–158 (2016)

    Google Scholar 

  33. Wandelt, S., Sun, X., Feng, D., Zanin, M., Havlin, S.: A comparative analysis of approaches to network-dismantling. Sci. Rep. 8(1), 1–15 (2018)

    Article  Google Scholar 

  34. Pei, S., Wang, J., Morone, F., Makse, H.A.: Influencer identification in dynamical complex systems. J. Complex Netw. 8(2) (2019)

    Google Scholar 

  35. Bellingeri, M., Bevacqua, D., Scotognella, F., Alfieri, R., Nguyen, Q., Montepietra, D., Cassi, D.: Link and node removal in real social networks: a review. Front. Phys. 8, 228 (2020)

    Article  Google Scholar 

  36. Ren, X.-L., Antulov-Fantulin, N.: Ensemble approach for generalized network dismantling. In: International Conference on Complex Networks and Their Applications, pp. 783–793. Springer (2019)

    Google Scholar 

  37. Fan, C., Zeng, L., Feng, Y., Xiu, B., Huang, J., Liu, Z.: Revisiting the power of reinsertion for optimal targets of network attack. J. Cloud Comput. 9(24), 1–13 (2020)

    Google Scholar 

  38. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

    Article  MATH  Google Scholar 

  39. König, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38(1031), 116–119 (1931)

    Google Scholar 

  40. Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MATH  Google Scholar 

  41. Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random networks. Science 323(5920), 1453–1455 (2009)

    Article  MATH  Google Scholar 

  42. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  43. Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Optimizing spread dynamics on graphs by message passing. J. Stat. Mech.: Theory Exp. 2013(09), P09011 (2013)

    Article  MATH  Google Scholar 

  44. Ren, X.-L.: The dismantling problem in complex networks and its applications. Ph.D. thesis. ETH Zurich (2021)

    Google Scholar 

  45. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)

    Article  Google Scholar 

  46. Trajanovski, S., Scellato, S., Leontiadis, I.: Error and attack vulnerability of temporal networks. Phys. Rev. E 85, 066105 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Dirk Helbing and Dr. Nino Antulov-Fantulin from ETH Zurich for their feedback and suggestions on this study. The author would like to thank the anonymous reviewers for their comments. This work was supported by the Postdoctoral Research Fund of China (No. 2022M710620), Natural Science Foundation of Sichuan Province (23NSFSC3624), and Science and Technology Foundation of Huzhou (No. 2021YZ12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Long Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, XL. (2023). The Vertex-Edge Separator Transformation Problem in Network-Dismantling. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics