Skip to main content

Statistical Network Similarity

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1078))

Included in the following conference series:

  • 1478 Accesses

Abstract

Graph isomorphism is a problem for which there is no known polynomial-time solution. The more general problem of computing graph similarity metrics, graph edit distance or maximum common subgraph, is NP-hard. Nevertheless, assessing (dis)similarity between two or more networks is a key task in many areas, such as image recognition, biology, chemistry, computer and social networks. In this article, we offer a statistical answer to the following questions: (a) “Are networks \(G_1\) and \(G_2\) similar?”, (b) “How different are the networks \(G_1\) and \(G_2\)?” and (c) “Is \(G_3\) more similar to \(G_1\) or \(G_2\)?”. Our comparisons begin with the transformation of each graph into an all-pairs distance matrix. Our node-node distance, Jaccard distance, has been shown to offer an accurate reflection of the graph’s connectivity structure. We then model these distances as probability distributions. Finally, we use well-established statistical tools to gauge the (dis)similarities in terms of probability distribution (dis)similarity. This comparison procedure aims to detect (dis)similarities in connectivity structure and community structure in particular, not in easily observable graph characteristics, such as degrees, edge counts or density. We validate our hypothesis that graphs can be meaningfully summarized and compared via their node-node distance distributions, using several synthetic and real-world graphs. Empirical results demonstrate its validity and the accuracy of our comparison technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akara-pipattana, P., Chotibut, T., Evnin, O.: Resistance distance distribution in large sparse random graphs (2021). arXiv:2107.12561

  2. Bai, Y., Dingand S. Bian, H., Chen, T., Sun, Y., Wang, W.: SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (2018). arXiv:1808.05689

  3. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications. Proc. Vision Interf. 21 (2000)

    Google Scholar 

  4. Camby, E., Caporossi, G.: The extended Jaccard distance in complex networks. Les Cahiers du GERAD G-2017-77 (2017)

    Google Scholar 

  5. Chebotarev, P., Shamis, E.: The Matrix-Forest Theorem and Measuring Relations in Small Social Groups. arXiv Mathematics e-prints math/0602070 (2006)

    Google Scholar 

  6. Coupette, C., Vreeken, J.: Graph similarity description: how are these graphs similar? In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 185–195. KDD ’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3447548.3467257

  7. Du, Z., Yang, Y., Gao, C., Huang, L., Huang, Q., Bai, Y.: The temporal network of mobile phone users in Changchun Municipality, Northeast China. Sci. Data 5, 180228 (2018)

    Google Scholar 

  8. Fouss, F., Francoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw. 31, 53–72 (2012). https://www.sciencedirect.com/science/article/pii/S0893608012000822

  9. Grohe, M., Rattan, G., Woeginger, G.: Graph Similarity and Approximate Isomorphism (2018). arXiv:1802.08509

  10. Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using network X. In: Varoquaux, G., Vaught, T., Millman, J. (eds.), Proceedings of the 7th Python in Science Conference, pp. 11–15. Pasadena, CA USA (2008)

    Google Scholar 

  11. Han, J.: Autonomous systems graphs (2016). https://doi.org/10.7910/DVN/XLGMJR

  12. Huang, S., Hitti, Y., Rabusseau, G., Rabbany, R.: Laplacian Change Point Detection for Dynamic Graphs (2020). arXiv:2007.01229

  13. Jaccard, P.: Étude de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  14. Tang, J., Leontiadis, I., Scellato, S., Nicosia, V., Mascolo, C., M. Musolesi, M., Latora, V.: Applications of temporal graph metrics to real-world networks. In: Temporal Networks, p. 135 (2013)

    Google Scholar 

  15. Koutra, D., Parikh, A., Ramdas, A., Xiang, J.: Algorithms for graph similarity and subgraph matching (2011). http://www.cs.cmu.edu/jingx/docs/DBreport.pdf. Accessed on 01 Dec 2015

  16. von Luxburg, U., Radl, A., Hein, M.: Getting lost in space: large sample analysis of the resistance distance. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.), Advances in Neural Information Processing Systems 23, pp. 2622–2630. Curran Associates, Inc. (2010). http://papers.nips.cc/paper/3891-getting-lost-in-space-large-sample-analysis-of-the-resistance-distance.pdf

  17. von Luxburg, U., Radl, A., Hein, M.: Hitting and commute times in large random neighborhood graphs. J. Mach. Learn. Res. 15(52), 1751–1798 (2014). http://jmlr.org/papers/v15/vonluxburg14a.html

  18. Maduako, I., Wachowicz, M., Hanson, T.: STVG: an evolutionary graph framework for analyzing fast-evolving networks. J. Big Data 6 (2019)

    Google Scholar 

  19. Miasnikof, P., Shestopaloff, A.Y., Pitsoulis, L., Ponomarenko, A.: An empirical comparison of connectivity-based distances on a graph and their computational scalability. J. Complex Netw. 10(1) (2022). https://doi.org/10.1093/comnet/cnac003

  20. Miasnikof, P., Shestopaloff, A.Y., Pitsoulis, L., Ponomarenko, A., Lawryshyn, Y.: Distances on a graph. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) Complex Networks & Their Applications IX, pp. 189–199. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online Learning of Social Representations (2014). arXiv:1403.6652

  22. Ponomarenko, A., Pitsoulis, L., Shamshetdinov, M.: Overlapping community detection in networks based on link partitioning and partitioning around medoids. PLOS One 16(8), 1–43 (2021). https://doi.org/10.1371/journal.pone.0255717

  23. Schieber, T., Carpi, L., Diaz-Guilera, A., Pardalos, P., Masoller, C., Ravetti, M.: Quantification of network structural dissimilarities. Nat. Commun. 8, 13928 (2017)

    Google Scholar 

  24. Shrivastava, N., Majumder, A., Rastogi, R.: In: 2008 IEEE 24th International Conference on Data Engineering, pp. 486–495 (2008)

    Google Scholar 

  25. Tang, J., Mascolo, C., Musolesi, M., Latora, V.: Exploiting temporal complex network metrics in mobile malware containment. In: 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–9 (2011)

    Google Scholar 

  26. Wang, Z., Zhan, X.X., Liu, C., Zhang, Z.K.: Quantification of network structural dissimilarities based on network embedding. iScience 104446 (2022). https://www.sciencedirect.com/science/article/pii/S2589004222007179

  27. Yan, H., Zhang, Q., Mao, D., Lu, Z., Guo, D., Chen, S.: Anomaly detection of network streams via dense subgraph discovery. In: 2021 International Conference on Computer Communications and Networks (ICCCN), pp. 1–9 (2021)

    Google Scholar 

  28. Ying, X., Wu, X., Barbará, D.: Spectrum based fraud detection in social networks. In: 2011 IEEE 27th International Conference on Data Engineering, pp. 912–923 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Miasnikof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miasnikof, P., Shestopaloff, A.Y., Bravo, C., Lawryshyn, Y. (2023). Statistical Network Similarity. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics