Skip to main content

Generalizing Homophily to Simplicial Complexes

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1078))

Included in the following conference series:

Abstract

Group interactions occur frequently in social settings, yet their properties beyond pairwise relationships in network models remain unexplored. In this work, we study homophily, the nearly ubiquitous phenomena wherein similar individuals are more likely than random to form connections with one another, and define it on simplicial complexes, a generalization of network models that goes beyond dyadic interactions. While some group homophily definitions have been proposed in the literature, we provide theoretical and empirical evidence that prior definitions mostly inherit properties of homophily in pairwise interactions rather than capture the homophily of group dynamics. Hence, we propose a new measure, k-simplicial homophily, which properly identifies homophily in group dynamics. Across 16 empirical networks, k-simplicial homophily provides information uncorrelated with homophily measures on pairwise interactions. Moreover, we show the empirical value of k-simplicial homophily in identifying when metadata on nodes is useful for predicting group interactions, whereas previous measures are uninformative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formally, given \(X^{(k-1)}\) is the \((k-1)\)-skeleton of X, \(\bar{X^{(k-1), k}}\) represents the maximal set of k-simplices which could be added to \(X^{(k-1)}\) while preserving that \(X^{(k-1)} \cup \bar{X^{(k-1), k}}\) is a simplicial complex.

References

  1. Agarwal, S., Mittal, N., Katyal, R., Sureka, A., Correa, D.: Women in computer science research: what is the bibliography data telling us? Acm Sigcas Comput. Soc. 46(1), 7–19 (2016)

    Article  Google Scholar 

  2. Asch, S.E.: Opinions and social pressure. Sci. Am. 193(5), 31–35 (1955)

    Google Scholar 

  3. Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M., Patania, A., Young, J.-G., Petri, G.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. (2020)

    Google Scholar 

  4. Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. Proc. Nat. Acad. Sci. 115(48), E11221–E11230 (2018)

    Google Scholar 

  5. Brown, R.: Social Psychology. Simon and Schuster (1986)

    Google Scholar 

  6. Dong, Y., Johnson, R.A., Xu, J., Chawla, N.V.: Structural diversity and homophily: a study across more than one hundred big networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816 (2017)

    Google Scholar 

  7. Easley, D., Kleinberg, J., et al.: Networks, Crowds, and Markets, vol. 8. Cambridge University Press Cambridge (2010)

    Google Scholar 

  8. Fowler, J.H.: Connecting the congress: a study of cosponsorship networks. Polit. Anal. 14(4), 456–487 (2006)

    Google Scholar 

  9. Fowler, J.H.: Legislative cosponsorship networks in the us house and senate. Soc. Netw. 28(4), 454–465 (2006)

    Google Scholar 

  10. Génois, M., Barrat, A.: Can co-location be used as a proxy for face-to-face contacts? EPJ Data Sci. 7(1), 11 (2018)

    Article  Google Scholar 

  11. Ghrist, R.W.: Elementary Applied Topology, vol. 1. Createspace Seattle (2014)

    Google Scholar 

  12. Hatcher, A.: Algebraic Topology (2002)

    Google Scholar 

  13. Kahle, Matthew, et al.: Topology of random simplicial complexes: a survey. AMS Contemp. Math 620, 201–222 (2014)

    Article  MATH  Google Scholar 

  14. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)

    Google Scholar 

  15. Kumar, T., Vaidyanathan, S., Ananthapadmanabhan, H., Parthasarathy, S., Ravindran, B.: Hypergraph clustering by iteratively reweighted modularity maximization. Appl. Netw. Sci. 5(1), 1–22 (2020)

    Article  Google Scholar 

  16. Latané, B., Williams, K., Harkins, S.: Many hands make light the work: the causes and consequences of social loafing. J. Personal. Soc. Psychol. 37(6), 822 (1979)

    Article  Google Scholar 

  17. Lazarsfeld, P.F., Merton, R.K., et al.: Friendship as a social process: a substantive and methodological analysis. Freedom Control Modern Soc. 18(1), 18–66 (1954)

    Google Scholar 

  18. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

    Google Scholar 

  19. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42 (2007)

    Google Scholar 

  20. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  21. Ozella, L., Paolotti, D., Lichand, G., Rodríguez, J.P., Haenni, S., Phuka, J., Leal-Neto, O.B., Cattuto, C.: Using wearable proximity sensors to characterize social contact patterns in a village of rural Malawi. EPJ Data Sci. 10(1), 46 (2021)

    Google Scholar 

  22. Satchidanand, S.N., Ananthapadmanaban, H., Ravindran, B.: Extended discriminative random walk: a hypergraph approach to multi-view multi-relational transductive learning. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  23. Schaub, M.T., Benson, A.R., Horn, P., Lippner, G., Jadbabaie, A.: Random walks on simplicial complexes and the normalized hodge 1-laplacian. SIAM Rev. 62(2), 353–391 (2020)

    Google Scholar 

  24. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PloS One 6(8), e23176 (2011)

    Article  Google Scholar 

  25. Veldt, N., Benson, A.R., Kleinberg, J.: Higher-order homophily is combinatorially impossible (2021). arXiv:2103.11818

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Sarker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarker, A., Northrup, N., Jadbabaie, A. (2023). Generalizing Homophily to Simplicial Complexes. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics