Skip to main content

Using the Duplication-Divergence Network Model to Predict Protein-Protein Interactions

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

  • 1656 Accesses

Abstract

Interactions between proteins are key to most biological processes, but thorough testing can be costly in terms of money and time. Computational approaches for predicting such interactions are an important alternative. This study presents a novel approach to this prediction using calibrated synthetic networks as input for training a decision tree ensemble model with relevant topological information. This trained model is later used for predicting interactions on the human interactome, as a case study. Results show that deterministic metrics perform better than their stochastic counterparts, although a random forest model shows a feature combination case with comparable precision results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, J.W., Zhou, Y.Q., Ul Qamar, M.T., Chen, L.L., Ding, Y.D.: Prediction of protein-protein interactions by evidence combining methods. Int. J. Mol. Sci. 17 (2016)

    Google Scholar 

  2. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785-794. KDD ’16, ACM, New York, NY, USA (2016)

    Google Scholar 

  3. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. J. Comput. Biol. J. Comput. Mol. Cell Biol. 10, 677–87 (2003)

    Article  Google Scholar 

  4. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks (2016). https://arxiv.org/abs/1607.00653

  5. Gysi, D.M., Ítalo do Valle, Zitnik, M., Ameli, A., Gan, X., Varol, O., Ghiassian, S.D., Patten, J.J., Davey, R.A., Loscalzo, J., Barabási, A.L.: Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Nat. Acad. Sci. 118(19) (2021)

    Google Scholar 

  6. Halder, A.K., Bandyopadhyay, S.S., Chatterjee, P., Nasipuri, M., Plewczynski, D., Basu, S.: JUPPI: A multi-level feature based method for PPI prediction and a refined strategy for performance assessment. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 531–542 (2022)

    Google Scholar 

  7. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete. Inform. Process. Lett. 5(1), 15–17 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ispolatov, I., Krapivsky, P.L., Yuryev, A.: Duplication-divergence model of protein interaction network. Physical review. E-Stat. Nonlin. Soft Matt. Phys. 71, 061911 (2005)

    Google Scholar 

  9. Kim, J., Krapivsky, P.L., Kahng, B., Redner, S.: Infinite-order percolation and giant fluctuations in a protein interaction network. Physical review. E-Stat. Nonlin. Soft Matt. Phys. 66, 055101 (2002)

    Google Scholar 

  10. Kovács, I.A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W., Kim, D.K., Kishore, N., Hao, T., Calderwood, M.A., Vidal, M., Barabási, A.L.: Network-based prediction of protein interactions. Nat. Commun. 10, 1240 (2019)

    Article  Google Scholar 

  11. Laraia, L., McKenzie, G., Spring, D.R., Venkitaraman, A.R., Huggins, D.J.: Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions. Chem. Biol. 22, 689–703 (2015)

    Article  Google Scholar 

  12. Lin, J.S., Lai, E.M.: Protein-protein interactions: Co-immunoprecipitation. In: Journet, L., Cascales, E. (eds.) Bacterial Protein Secretion Systems: Methods and Protocols, pp. 211–219. Springer, New York, New York, NY (2017)

    Chapter  Google Scholar 

  13. Luck, K., Kim, D.K., Lambourne, L., Spirohn, K., Begg, B.E., Bian, W., Brignall, R., Cafarelli, T., Campos-Laborie, F.J., Charloteaux, B., Choi, D., Coté, A.G., Daley, M., Deimling, S., Desbuleux, A., Dricot, A., Gebbia, M., Hardy, M.F., Kishore, N., Knapp, J.J., Kovács, I.A., Lemmens, I., Mee, M.W., Mellor, J.C., Pollis, C., Pons, C., Richardson, A.D., Schlabach, S., Teeking, B., Yadav, A., Babor, M., Balcha, D., Basha, O., Bowman-Colin, C., Chin, S.F., Choi, S.G., Colabella, C., Coppin, G., D’Amata, C., De Ridder, D., De Rouck, S., Duran-Frigola, M., Ennajdaoui, H., Goebels, F., Goehring, L., Gopal, A., Haddad, G., Hatchi, E., Helmy, M., Jacob, Y., Kassa, Y., Landini, S., Li, R., van Lieshout, N., MacWilliams, A., Markey, D., Paulson, J.N., Rangarajan, S., Rasla, J., Rayhan, A., Rolland, T., San-Miguel, A., Shen, Y., Sheykhkarimli, D., Sheynkman, G.M., Simonovsky, E., Taşan, M., Tejeda, A., Tropepe, V., Twizere, J.C., Wang, Y., Weatheritt, R.J., Weile, J., Xia, Y., Yang, X., Yeger-Lotem, E., Zhong, Q., Aloy, P., Bader, G.D., De Las Rivas, J., Gaudet, S., Hao, T., Rak, J., Tavernier, J., Hill, D.E., Vidal, M., Roth, F.P., Calderwood, M.A.: A reference map of the human binary protein interactome. Nature 580(7803), 402–408 (2020)

    Article  Google Scholar 

  14. Ma, C.Y., Liao, C.S.: A review of protein-protein interaction network alignment: From pathway comparison to global alignment. Comput. Struct. Biotechnol. J. 18, 2647–2656 (2020)

    Article  Google Scholar 

  15. Macalino, S.J.Y., Basith, S., Clavio, N.A.B., Chang, H., Kang, S., Choi, S.: Evolution of In Silico Strategies for Protein-Protein Interaction Drug Discovery. Molecules. Basel, Switzerland, pp. 23 (2018)

    Google Scholar 

  16. Mudunuri, U., Che, A., Yi, M., Stephens, R.M.: biodbnet: The biological database network. Bioinformatics 25, 555–6 (2009)

    Article  Google Scholar 

  17. Muscoloni, A., Abdelhamid, I., Cannistraci, C.V.: Local-community network automata modelling based on length-three-paths for prediction of complex network structures in protein interactomes, food webs and more. BioRxiv (2018)

    Google Scholar 

  18. Pastor-Satorras, R., Smith, E., Solé, R.V.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Rajagopala, S.V.: Mapping the protein-protein interactome networks using yeast two-hybrid screens. Adv. Experiment. Med. Biol. 883, 187–214 (2015)

    Article  Google Scholar 

  21. Rozemberczki, B., Kiss, O., Sarkar, R.: Karate Club: An API oriented open-source python framework for unsupervised learning on graphs. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20), pp. 3125-3132. ACM (2020)

    Google Scholar 

  22. Sarkar, D., Saha, S.: Machine-learning techniques for the prediction of protein-protein interactions. J. Biosci. 44 (2019)

    Google Scholar 

  23. Schweiger, R., Linial, M., Linial, N.: Generative probabilistic models for protein-protein interaction networks-the biclique perspective. Bioinformatics 27, i142-8 (2011)

    Article  Google Scholar 

  24. Shao, M., Yang, Y., Guan, J., Zhou, S.: Choosing appropriate models for protein-protein interaction networks: a comparison study. Brief. Bioinform. 15, 823–38 (2014)

    Article  Google Scholar 

  25. Shokri, L., Inukai, S., Hafner, A., Weinand, K., Hens, K., Vedenko, A., Gisselbrecht, S.S., Dainese, R., Bischof, J., Furger, E., Feuz, J.D., Basler, K., Deplancke, B., Bulyk, M.L.: A comprehensive drosophila melanogaster transcription factor interactome. Cell Rep. 27, 955-970.e7 (2019)

    Article  Google Scholar 

  26. Sreedharan, J.K., Turowski, K., Szpankowski, W.: Revisiting parameter estimation in biological networks: Influence of symmetries. IEEE/ACM Trans. Comput. Biol. Bioinform. 18, 836–849 (2021)

    Google Scholar 

  27. Stumpf, M.P.H., Thorne, T., de Silva, E., Stewart, R., An, H.J., Lappe, M., Wiuf, C.: Estimating the size of the human interactome. Proc. Nat. Acad. Sci. U.S.A. 105, 6959–64 (2008)

    Article  Google Scholar 

  28. Sun, T., Zhou, B., Lai, L., Pei, J.: Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinform. 18, 277 (2017)

    Article  Google Scholar 

  29. Xiao, Z., Deng, Y.: Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network. PLOS ONE 15, e0238915 (2020)

    Article  Google Scholar 

  30. Yao, Y., Du, X., Diao, Y., Zhu, H.: An integration of deep learning with feature embedding for protein-protein interaction prediction. Peer J. 7, e7126 (2019)

    Article  Google Scholar 

  31. Zahiri, J., Emamjomeh, A., Bagheri, S., Ivazeh, A., Mahdevar, G., Sepasi Tehrani, H., Mirzaie, M., Fakheri, B.A., Mohammad-Noori, M.: Protein complex prediction: a survey. Genomics 112, 174–183 (2020)

    Article  Google Scholar 

  32. Zhang, Y., Gao, P., Yuan, J.: Plant protein-protein interaction network and interactome. Curr. Genom. 11(1), 40–46 (2010)

    Google Scholar 

  33. Zhong, X., Rajapakse, J.C.: Graph embeddings on gene ontology annotations for protein-protein interaction prediction. BMC Bioinform. 21, 560 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the OMICAS program: Optimización Multiescala In-silico de Cultivos Agrícolas Sostenibles (Infraestructura y Validación en Arroz y Caña de Azúcar), anchored at the Pontificia Universidad Javeriana in Cali and funded within the Colombian Scientific Ecosystem by The World Bank, the Colombian Ministry of Science, Technology and Innovation, the Colombian Ministry of Education, and the Colombian Ministry of Industry and Tourism, and ICETEX, under GRANT ID: FP44842-217-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás López-Rozo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Rozo, N., Finke, J., Rocha, C. (2023). Using the Duplication-Divergence Network Model to Predict Protein-Protein Interactions. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics