Skip to main content

Genetic Improvement of TCP Congestion Avoidance

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2022)

Abstract

The Transmission Control Protocol (TCP) protocol, i.e., one of the most used protocols over networks, has a crucial role on the functioning of the Internet. Its performance heavily relies on the management of the congestion window, which regulates the amount of packets that can be transmitted on the network. In this paper, we employ Genetic Programming (GP) for evolving novel congestion policies, encoded as C++ programs. We optimize the function that manages the size of the congestion window in a point-to-point WiFi scenario, by using the NS3 simulator. The results show that, in the protocols discovered by GP, the Additive-Increase-Multiplicative-Decrease principle is exploited differently than in traditional protocols, by using a more aggressive window increasing policy. More importantly, the evolved protocols show an improvement of the throughput of the network of about 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The variables inside the expression are not detected.

References

  1. Saleh, K., Probert, R.: Automatic synthesis of protocol specifications from service specifications. In: International Phoenix Conference on Computers and Communications, pp. 615–621. IEEE, New York (1991)

    Google Scholar 

  2. Probert, R.L., Saleh, K.: Synthesis of communication protocols: survey and assessment. Trans. Comput. 40(4), 468–476 (1991)

    Article  Google Scholar 

  3. Carchiolo, V., Faro, A., Giordano, D.: Formal description techniques and automated protocol synthesis. Inf. Softw. Technol. 34(8), 513–521 (1992)

    Article  Google Scholar 

  4. Saleh, K.: Synthesis of communications protocols: an annotated bibliography. SIGCOMM Comput. Commun. Rev. 26(5), 40–59 (1996)

    Article  Google Scholar 

  5. Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. In: Complex Adaptive Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  6. Riley, G.F., Henderson, T.R.: The NS-3 network simulator. In: Wehrle, K., Güneş, M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15–34. Springer (2010). https://doi.org/10.1007/978-3-642-12331-3_2

  7. Jiang, H., et al.: When machine learning meets congestion control: a survey and comparison. arXiv:2010.11397 [cs], October 2020

  8. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. In: Proceedings IEEE INFOCOM 2006, 25TH IEEE International Conference on Computer Communications, pp. 1–12, April 2006. ISSN: 0743–166X

    Google Scholar 

  9. Nakano, T.: Biologically inspired network systems: a review and future prospects. Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(5), 630–643 (2010)

    Google Scholar 

  10. Dressler, F., Akan, O.B.: A survey on bio-inspired networking. Comput. Netw. 54(6), 881–900 (2010)

    Google Scholar 

  11. Guo, K., Lv, Y.: Optimizing routing path selection method particle swarm optimization. Int. J. Pattern Recogn. Artif. Intell. 34(12), 2059042 (2020)

    Google Scholar 

  12. Zhang, X., Li, J., Qiu, R., Mean, T.-S., Jin, F.: Optimized routing model of sensor nodes in internet of things network. Sens. Mater. 32(8), 2801–2811 (2020)

    Google Scholar 

  13. El-Fakih, K., Yamaguchi, H., Bochmann, G.: A method and a genetic algorithm for deriving protocols for distributed applications with minimum communication cost. In: International Conference on Parallel and Distributed Computing and Systems, Calgary, AB, Canada, IASTED, pp. 1–6 (1999)

    Google Scholar 

  14. Lewis, T., Fanning, N., Clemo, G.: Enhancing IEEE802.11 DCF using genetic programming. In: Vehicular Technology Conference, vol. 3, pp. 1261–1265. IEEE, New York (2006)

    Google Scholar 

  15. Roohitavaf, M., Zhu, L., Kulkarni, S., Biswas, S.: Synthesizing customized network protocols using genetic programming. In: Genetic and Evolutionary Computation Conference Companion, pp. 1616–1623. ACM, New York (2018)

    Google Scholar 

  16. Sharples, N., Wakeman, I.: Protocol construction using genetic search techniques. In: Cagnoni, S. (ed.) EvoWorkshops 2000. LNCS, vol. 1803, pp. 235–246. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45561-2_23

    Chapter  Google Scholar 

  17. Hajiaghajani, F., Biswas, S.: Feasibility of evolutionary design for multi-access MAC protocols. In: Global Communications Conference, pp. 1–7. IEEE, New York (2015)

    Google Scholar 

  18. Hajiaghajani, F., Biswas, S.: MAC protocol design using evolvable state-machines. In: International Conference on Computer Communication and Networks, pp. 1–6. IEEE, New York (2015)

    Google Scholar 

  19. Tekken-Valapil, V., Kulkarni, S.S.: Derivation of network reprogramming protocol with Z3 (2017)

    Google Scholar 

  20. Weise, T., Geihs, K., Baer, P.A.: Genetic programming for proactive aggregation protocols. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 167–173. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71618-1_19

    Chapter  Google Scholar 

  21. Weise, T., Zapf, M., Geihs, K.: Evolving proactive aggregation protocols. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 254–265. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9_22

    Chapter  MATH  Google Scholar 

  22. Weise, T., Tang, K.: Evolving distributed algorithms with genetic programming. Trans. Evolut. Comput. 16(2), 242–265 (2011)

    Article  Google Scholar 

  23. Van Belle, W., Mens, T., D’Hondt, T.: Using genetic programming to generate protocol adaptors for interprocess communication. In: Tyrrell, A.A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 422–433. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36553-2_38

    Chapter  MATH  Google Scholar 

  24. Johnson, D.M., Teredesai, A.M., Saltarelli, R.T.: Genetic programming in wireless sensor networks. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 96–107. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31989-4_9

    Chapter  Google Scholar 

  25. Valencia, P., Lindsay, P., Jurdak, R.: Distributed genetic evolution in WSN. In: International Conference on Information Processing in Sensor Networks, pp. 13–23. ACM/IEEE, New York (2010)

    Google Scholar 

  26. Iacca, G.: Distributed optimization in wireless sensor networks: an island-model framework. Soft. Comput. 17(12), 2257–2277 (2013). https://doi.org/10.1007/s00500-013-1091-x

    Article  Google Scholar 

  27. Wang, S., Li, C.: Distributed robust optimization in networked system. IEEE Trans. Cybern. 47(8), 2321–2333 (2017)

    Article  Google Scholar 

  28. Ning, B., Han, Q., Zuo, Z.: Distributed optimization of multiagent systems with preserved network connectivity. IEEE Trans. Cybern. 49(11), 3980–3990 (2019)

    Article  Google Scholar 

  29. Wang, D., Yin, J., Wang, W.: Distributed randomized gradient-free optimization protocol of multiagent systems over weight-unbalanced digraphs. IEEE Trans. Cybern. 51(1), 473–482 (2021)

    Article  Google Scholar 

  30. Su, Y., Van Der Schaar, M.: Dynamic conjectures in random access networks using bio-inspired learning. J. Sel. Areas Commun. 28(4), 587–601 (2010)

    Google Scholar 

  31. Aloi, G., et al.: STEM-Net: an evolutionary network architecture for smart and sustainable cities. Trans. Emerging Telecommun. Technol. 25(1), 21–40 (2014)

    Article  Google Scholar 

  32. Yamamoto, L., Schreckling, D., Meyer, T.: Self-replicating and self-modifying programs in Fraglets. In: Workshop on Bio-Inspired Models of Network, Information and Computing Systems, pp. 159–167. IEEE, New York (2007)

    Google Scholar 

  33. Tschudin, C., Yamamoto, L.: Self-evolving network software. Praxis der Informationsverarbeitung und Kommunikation 28(4), 206–210 (2005)

    Article  Google Scholar 

  34. Miorandi, D., Yamamoto, L.: Evolutionary and embryogenic approaches to autonomic systems. In: International Conference on Performance Evaluation Methodologies and Tools, pp. 1–12. ACM, New York (2008)

    Google Scholar 

  35. Yaman, A., Iacca, G.: Distributed embodied evolution over networks. Appl. Soft Comput. 101, 106993 (2021)

    Article  Google Scholar 

  36. Biaz, S., Vaidya, N.: Discriminating congestion losses from wireless losses using inter-arrival times at the receiver. In: Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, ASSET 1999 (Cat. No.PR00122), pp. 10–17, March 1999

    Google Scholar 

  37. Cen, S., Cosman, P.C., Voelker, G.M.: End-to-end differentiation of congestion and wireless losses. IEEE/ACM Trans. Netw. 11(5), 703–717 (2003)

    Article  Google Scholar 

  38. I’onseca, N., Crovella, M.: Bayesian packet loss detection for TCP. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1826–1837. IEEE, Miami (2005)

    Google Scholar 

  39. Ye, G.Z., Kang, D.K.: Extended evolutionary algorithms with stagnation-based extinction protocol. Appl. Sci. 11(8), 3461 (2021)

    Google Scholar 

  40. Kurkowski, S., Camp, T., Colagrosso, M.: Manet simulation studies: the Incredibles. SIGMOBILE Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

    Article  Google Scholar 

  41. Stojmenovic, I.: Simulations in wireless sensor and ad hoc networks: matching and advancing models, metrics, and solutions. IEEE Commun. Mag. 46(12), 102–107 (2008)

    Article  Google Scholar 

  42. Friis, H.T.: A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)

    Article  Google Scholar 

  43. Stoffers, M., Riley, G.: Comparing the NS-3 propagation models. In: IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, IEEE 2012, pp. 61–67 (2012)

    Google Scholar 

  44. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  45. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Iacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carbognin, A., Custode, L.L., Iacca, G. (2022). Genetic Improvement of TCP Congestion Avoidance. In: Mernik, M., Eftimov, T., Črepinšek, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2022. Lecture Notes in Computer Science, vol 13627. Springer, Cham. https://doi.org/10.1007/978-3-031-21094-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21094-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21093-8

  • Online ISBN: 978-3-031-21094-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics