Skip to main content

Morse Graphs: Topological Tools for Analyzing the Global Dynamics of Robot Controllers

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XV (WAFR 2022)

Abstract

Understanding the global dynamics of a robot controller, such as identifying attractors and their regions of attraction (RoA), is important for safe deployment and synthesizing more effective hybrid controllers. This paper proposes a topological framework to analyze the global dynamics of robot controllers, even data-driven ones, in an effective and explainable way. It builds a combinatorial representation representing the underlying system’s state space and non-linear dynamics, which is summarized in a directed acyclic graph, the Morse graph. The approach only probes the dynamics locally by forward propagating short trajectories over a state-space discretization, which needs to be a Lipschitz-continuous function. The framework is evaluated given either numerical or data-driven controllers for classical robotic benchmarks. It is compared against established analytical and recent machine learning alternatives for estimating the RoAs of such controllers. It is shown to outperform them in accuracy and efficiency. It also provides deeper insights as it describes the global dynamics up to the discretization’s resolution. This allows to use the Morse graph to identify how to synthesize controllers to form improved hybrid solutions or how to identify the physical limitations of a robotic system.

Kostas E. Bekris : The work is supported in part by an NSF HDR TRIPODS award 1934924. MG and KM were partially supported by the NSF under awards DMS-1839294, DARPA contract HR0011-16-2-0033, and NIH award R01 GM126555. MG was also partially supported by CNPq grant 309073/2019-7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, A., Ahmed, D., Edwards, A., Giacobbe, M., Peruffo, A.: Fossil: a software tool for the formal synthesis of lyapunov functions and barrier certificates using neural networks. In: HSCC, pp. 1–11 (2021)

    Google Scholar 

  2. Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull, D.: Morse decompositions for coverage tasks. IJRR 21(4), 331–344 (2002)

    Google Scholar 

  3. Akametalu, A.K., Fisac, J.F., Gillula, J.H., Kaynama, S., Zeilinger, M.N., Tomlin, C.J.: Reachability-based safe learning with gaussian processes. In: CDC (2014)

    Google Scholar 

  4. Antonova, R., Varava, A., Shi, P., Carvalho, J.F., Kragic, D.: Sequential topological representations for predictive models of deformable objects. In: L4DC (2021)

    Google Scholar 

  5. Bansal, S., Chen, M., Herbert, S., Tomlin, C.J.: Hamilton-jacobi reachability: a brief overview and recent advances. In: CDC (2017)

    Google Scholar 

  6. Berkenkamp, F., Moriconi, R., Schoellig, A.P., Krause, A.: Safe learning of RoAs for uncertain, nonlinear systems with Gaussian Processes. In: CDC (2016)

    Google Scholar 

  7. Berkenkamp, F., Schoellig, A.P.: Safe and robust learning control with Gaussian Processes. In: ECC (2015)

    Google Scholar 

  8. Bhattacharya, S., Kim, S., Heidarsson, H., Sukhatme, G.S., Kumar, V.: A topological approach to using cables to manipulate sets of objects. IJRR 34(6) (2015)

    Google Scholar 

  9. Bobiti, R., Lazar, M.: A sampling approach to constructing lyapunov functions for nonlinear continuous-time systems. In: CDC (2016)

    Google Scholar 

  10. Bush, J., Gameiro, M., Harker, S., Kokubu, H., Mischaikow, K., Obayashi, I., Pilarczyk, P.: Combinatorial-topological framework for the analysis of global dynamics. Chaos: An Interdiscip. J. Nonlinear Sci. 22(4) (2012)

    Google Scholar 

  11. Carvalho, J.F., Vejdemo-Johansson, M., Pokorny, F.T., Kragic, D.: Long-term prediction of motion trajectories using path homology clusters. In: IROS (2019)

    Google Scholar 

  12. Chen, S., Fazlyab, M., Morari, M., Pappas, G.J., Preciado, V.M.: Learning lyapunov functions for hybrid systems. In: HSCC, pp. 1–11 (2021)

    Google Scholar 

  13. Chen, S., Fazlyab, M., Morari, M., Pappas, G.J., Preciado, V.M.: Learning region of attraction for nonlinear systems (2021). arXiv:2110.00731

  14. Choi, J.J., Agrawal, A., Sreenath, K., Tomlin, C.J., Bansal, S.: Computation of RoAs for Hybrid Limit Cycles Using Reachability (2022). arXiv:2201.08538

  15. Conley, C.: Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38. American Mathematical Society, RI (1978)

    Book  Google Scholar 

  16. Corke, P.I., Khatib, O.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB, vol. 73. Springer (2011)

    Google Scholar 

  17. Dai, H., Landry, B., Pavone, M., Tedrake, R.: Counter-example guided synthesis of neural network lyapunov functions for piecewise linear systems. In: CDC (2020)

    Google Scholar 

  18. Dai, H., Landry, B., Yang, L., Pavone, M., Tedrake, R.: Lyapunov-stable neural-network control (2021). arXiv:2109.14152

  19. Gameiro, M., Harker, S.: CMGDB: Conley Morse Graph Database (2022). https://github.com/marciogameiro/CMGDB

  20. Ge, Q., Richmond, T., Zhong, B., Marchitto, T.M., Lobaton, E.J.: Enhancing the morphological segmentation of microscopic fossils through localized topology-aware edge detection. Auton. Robot. 45(5), 709–723 (2021)

    Article  Google Scholar 

  21. Giesl, P., Hafstein, S.: Review on computational methods for lyapunov functions. Disc. Cont. Dyn. Syst.-B 20(8), 2291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gillen, S., Molnar, M., Byl, K.: Combining deep reinforcement learning and local control for the acrobot swing-up and balance task. In: CDC (2020)

    Google Scholar 

  23. Gillulay, J.H., Tomlin, C.J.: Guaranteed safe online learning of a bounded system. In: IROS (2011)

    Google Scholar 

  24. Granados, E., Sivaramakrishnan, A., McMahon, T., Littlefield, Z., Bekris, K.E.: Machine learning for kinodynamic planning (ml4kp) software (2021)

    Google Scholar 

  25. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: ICML (2018)

    Google Scholar 

  26. Henrion, D., Korda, M.: Convex computation of the RoA of polynomial control systems. IEEE Trans. Autom. Control 59(2), 297–312 (2013)

    Article  MATH  Google Scholar 

  27. Kalies, W.D., Mischaikow, K., Vandervorst, R.: An algorithmic approach to chain recurrence. Found. Comput. Math. 5(4), 409–449 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kalies, W.D., Mischaikow, K., Vandervorst, R.: Lattice structures for attractors I. J. Comput. Dyn. 1(2), 307–338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kalies, W.D., Mischaikow, K., Vandervorst, R.: Lattice structures for attractors II. Found. Comput. Math. 1(2), 1–41 (2015)

    MATH  Google Scholar 

  30. Kalies, W.D., Mischaikow, K., Vandervorst, R.: Lattice structures for attractors III. J. Dyn. Diff. Equ. 1572–9222 (2021)

    Google Scholar 

  31. Lederer, A., Hirche, S.: Local asymptotic stability analysis and region of attraction estimation with gaussian processes. In: CDC (2019)

    Google Scholar 

  32. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion planning. Int. J. Robot. Res. 36(8), 947–982 (2017)

    Article  Google Scholar 

  33. Mamakoukas, G., Abraham, I., Murphey, T.D.: Learning stable models for prediction and control. IEEE Trans. Robot. (2020)

    Google Scholar 

  34. Orthey, A., Toussaint, M.: Visualizing local minima in multi-robot motion planning using multilevel morse theory. In: International Workshop on the Algorithmic Foundations of Robotics, pp. 502–517. Springer (2020)

    Google Scholar 

  35. Pandita, R., Chakraborty, A., Seiler, P., Balas, G.: Reachability and RoA analysis applied to GTM dynamic flight envelope assessment. In: AIAA CNC (2009)

    Google Scholar 

  36. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. California Institute of Technology (2000)

    Google Scholar 

  37. Perkins, T.J., Barto, A.G.: Lyapunov design for safe reinforcement learning. JMLR 3(Dec), 803–832 (2002)

    Google Scholar 

  38. Pesterev, A.V.: Attraction domain estimate for single-input affine systems with constrained control. Autom. Remote Control 78(4), 581–594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pesterev, A.V.: Attraction domain for affine systems with constrained vector control closed by linearized feedback. Autom. Remote Control 80(5) (2019)

    Google Scholar 

  40. Pokorny, F.T., Kragic, D., Kavraki, L.E., Goldberg, K.: High-dimensional winding-augmented motion planning with 2D topological task projections & persistent homology. In: ICRA (2016)

    Google Scholar 

  41. Posa, M., Tobenkin, M., Tedrake, R.: Lyapunov analysis of rigid body systems with impacts and friction via sums-of-squares. In: HSCC, pp. 63–72 (2013)

    Google Scholar 

  42. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: CDC (2002)

    Google Scholar 

  43. Rapoport, L.B., Morozov, Y.V.: Estimation of attraction domains in wheeled robot control using absolute stability approach. IFAC 41(2), 5903–5908 (2008)

    Google Scholar 

  44. Richards, S.M., Berkenkamp, F., Krause, A.: Lyapunov Neural Network: adaptive stability certification for safe learning of dynamical systems. In: CoRL (2018)

    Google Scholar 

  45. Spong, M.: The swing up control problem for the acrobot. IEEE Control Syst. Mag. 15(1), 49–55 (1995)

    Article  Google Scholar 

  46. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Soft. 11(1–4), 625–653 (1999)

    Google Scholar 

  47. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: feedback motion planning via sums-of-squares verification. IJRR 29(8) (2010)

    Google Scholar 

  48. Vannelli, A., Vidyasagar, M.: Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems. Automatica 21(1), 69–80 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Varava, A., Hang, K., Kragic, D., Pokorny, F.T.: Herding by caging: a topological approach towards guiding moving agents via mobile robots. In: R:SS (2017)

    Google Scholar 

  50. Vieira, E.R.: RoA: Region of Attraction (2022). https://github.com/Ewerton-Vieira/RoA

  51. Wang, L., Theodorou, E.A., Egerstedt, M.: Safe learning of quadrotor dynamics using barrier certificates. In: ICRA (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewerton R. Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vieira, E.R., Granados, E., Sivaramakrishnan, A., Gameiro, M., Mischaikow, K., Bekris, K.E. (2023). Morse Graphs: Topological Tools for Analyzing the Global Dynamics of Robot Controllers. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_26

Download citation

Publish with us

Policies and ethics