Skip to main content

A New Application of Discrete Morse Theory to Optimizing Safe Motion Planning Paths

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XV (WAFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 25))

Included in the following conference series:

Abstract

We present a novel method for extracting geometric and topological features from a robot’s configuration space. To accomplish this, we define a discrete Morse function on the Vietoris-Rips simplicial complex to identify critical points on the surface of obstacles present. These critical points serve as waypoints for determining feasible bounds near an identified obstacle. This work builds on previous work that provides a method to approximate the number of samples required to generate pathways. Our results achieve near-optimal paths with a low computation time and reduced path distance in this work. We conduct experiments in different environments and with various robots, including the Kuka YouBot and PR2 robots in simulation, and demonstrate the performance gains compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E.U., Choset, H.: Sensor-based coverage of unknown environments: incremental construction of Morse decompositions. Int. J. Robot. Res. 21(4), 345–366 (2002)

    Article  Google Scholar 

  2. Acar, E.U., Choset, H., Rizzi, A.A., Atkar, P.N., Hull, D.: Morse decompositions for coverage tasks. Int. J. Robot. Res. 21(4), 331–344 (2002)

    Article  Google Scholar 

  3. Almadhoun, R., Taha, T., Gan, D., Dias, J., Zweiri, Y., Seneviratne, L.: Coverage path planning with adaptive viewpoint sampling to construct 3d models of complex structures for the purpose of inspection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7047–7054. IEEE (2018)

    Google Scholar 

  4. Atkar, P.N., Choset, H., Rizzi, A.A., Acar, E.U.: Exact cellular decomposition of closed orientable surfaces embedded in/spl rfr//sup 3. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). vol. 1, pp. 699–704. IEEE (2001)

    Google Scholar 

  5. Attali, D., Lieutier, A., Salinas, D.: Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes. Comput. Geom. 46(4), 448–465 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: Proceedings of International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1018–1023 (1999)

    Google Scholar 

  7. Cabreira, T.M., Brisolara, L.B., Ferreira, P.R., Jr.: Survey on coverage path planning with unmanned aerial vehicles. Drones 3(1), 4 (2019)

    Article  Google Scholar 

  8. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA (2005)

    MATH  Google Scholar 

  9. Denny, J., Sandström, R., Bregger, A., Amato, N.M.: Dynamic region-biased rapidly-exploring random trees. In: Twelfth International Workshop on the Algorithmic Foundations of Robotics (WAFR) (2016)

    Google Scholar 

  10. Dey, T.K., Fan, F., Wang, Y.: Graph induced complex on point data. In: Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry, pp. 107–116 (2013)

    Google Scholar 

  11. Forman, R.: A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combinatoire [electronic only] 48, B48c–35 (2002)

    Google Scholar 

  12. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)

    Article  Google Scholar 

  13. Gottschalk, S., Lin, M., Manocha, D.: Obb-tree: a hierarchical structure for rapid interference detection. In: Proceedings of the ACM SIGGRAPH, pp. 171–180 (1996)

    Google Scholar 

  14. Holmgren, B., McCoy, B., Fasy, B., Millman, D.: If you must choose among your children, pick the right one (2021). arXiv:2103.13882

  15. Hsu, D., Jiang, T., Reif, J., Sun, Z.: Bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proceedings of International Conference on Robotics and Automation (ICRA), pp. 4420–4426. IEEE (2003)

    Google Scholar 

  16. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. In: Proceedings of Robotics: Science and Systems. Zaragoza, Spain (2010)

    Google Scholar 

  17. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    Article  Google Scholar 

  18. King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krishnaswamy, V., Newman, W.S.: Online motion planning using critical point graphs in two-dimensional configuration space. In: Proceedings 1992 IEEE International Conference on Robotics and Automation, pp. 2334–2339. IEEE (1992)

    Google Scholar 

  20. KUKA Robotics Corporation: Kukayoubot. https://cyberbotics.com/doc/guide/youbot. Accessed: 27 May 2022

  21. Lab, P.: Parasol planning library (2022). https://github.com/parasol-ppl/ppl

  22. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: Proceedings of International Conference on Robotics and Automation (ICRA), pp. 473–479 (1999)

    Google Scholar 

  23. McMahon, T., Jacobs, S., Boyd, B., Tapia, L., Amato, N.M.: Evaluation of the k-closest neighbor selection strategy for PRM construction. Technical Report TR12-002, Texas A &M, College Station Tx (2011)

    Google Scholar 

  24. Oksanen, T., Visala, A.: Coverage path planning algorithms for agricultural field machines. J. Field Robot. 26(8), 651–668 (2009)

    Article  MATH  Google Scholar 

  25. Orthey, A., Akbar, S., Toussaint, M.: Multilevel motion planning: a fiber bundle formulation. Int. J. Robot. Res. (2020)

    Google Scholar 

  26. Orthey, A., Frész, B., Toussaint, M.: Motion planning explorer: visualizing local minima using a local-minima tree. IEEE Robot. Autom. Lett. 5(2), 346–353 (2019)

    Article  Google Scholar 

  27. Shvalb, N., Moshe, B.B., Medina, O.: A real-time motion planning algorithm for a hyper-redundant set of mechanisms. Robotica 31(8), 1327–1335 (2013)

    Article  Google Scholar 

  28. Upadhyay, A., Ekenna, C.: Investigating heterogeneous planning spaces. In: 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 108–115. IEEE (2018)

    Google Scholar 

  29. Upadhyay, A., Goldfarb, B., Ekenna, C.: A topological approach to finding coarsely diverse paths. In: IROS: IEEE/RSJ International Workshop on Intelligent Robots and Systems. IEEE (2021)

    Google Scholar 

  30. Upadhyay, A., Tran, T., Ekenna, C.: A topology approach towards modeling activities and properties on a biomolecular surface. In: BIBM: IEEE International Conference on Bioinformatics and Biomedicine. IEEE (2021)

    Google Scholar 

  31. Upadhyay, A., Wang, W., Ekenna, C.: Approximating Cfree space topology by constructing vietoris-rips complex. In: IROS: IEEE/RSJ International Workshop on Intelligent Robots and Systems, pp. 2517–2523 (2019)

    Google Scholar 

  32. WillowGarage: PR2 Robot (2016). www.willowgarage.com

  33. Wilmarth, S.A., Amato, N.M., Stiller, P.F.: MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proceedings of International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1024–1031 (1999)

    Google Scholar 

  34. Wu, Y.: An obstacle-based probabilistic roadmap method for path planning. Master’s thesis, Department of Computer Science, Texas A &M University (1996)

    Google Scholar 

  35. Yershova, A., Jaillet, L., Simeon, T., Lavalle, S.M.: Dynamic-domain RRTs: efficient exploration by controlling the sampling domain. In: Proceedings of International Conference on Robotics and Automation (ICRA), pp. 3856–3861 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aakriti Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Upadhyay, A., Goldfarb, B., Wang, W., Ekenna, C. (2023). A New Application of Discrete Morse Theory to Optimizing Safe Motion Planning Paths. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_2

Download citation

Publish with us

Policies and ethics