Skip to main content

TaG-Net: Topology-Aware Graph Network for Vessel Labeling

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13754)

Abstract

Anatomical labeling of head and neck vessels is a vital step for cerebrovascular disease diagnosis. However, it remains challenging to automatically and accurately label vessels in computed tomography angiography (CTA), since head and neck vessels are tortuous, branched, and often close to nearby tubular-like vasculatures. To address these challenges, we transform the voxel labeling problem into the centerline labeling task and propose a novel method of topology-aware graph network (TaG-Net) for vessel labeling of 18 segments covering both head and neck, in which the efficiency of centerline’ sparse representation using the point cloud is exploited and vessel’s topological structure can be better represented using the topology-aware graph. First, a topology-aware graph is constructed from the extracted vessel centerlines. Second, we design topology-preserving sampling and topology-aware feature grouping so that the network’s sampling and grouping layers preserve the vascular structures. Third, the vascular features extracted from the point processing layer and the GCN layer are aggregated for centerline labeling. Finally, the labeling task is accomplished by assigning the closet label from each point of the centerline to the mask voxels. Using head and neck CTA of 401 subjects and a five-fold-cross-validation strategy, experiments show that TaG-Net yields an average recall of 0.977 and an average precision of 0.977, with mean F1 as 0.977 for centerline labeling. After back-propagating labels onto vessel masks, TaG-Net achieves an average Dice coefficient of 0.991 for 18 vessel segments compared to that of 0.980 by the V-Net. The results indicate that the proposed network could facilitate head and neck vessel analysis by providing automatic and accurate vessel labeling.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bogunović, H., Pozo, J.M., Cárdenes, R., San Román, L., Frangi, A.F.: Anatomical labeling of the Circle of Willis using maximum a posteriori probability estimation. IEEE Trans. Med. Imaging 32(9), 1587–1599 (2013)

    Article  Google Scholar 

  2. Cao, Q., et al.: Automatic identification of coronary tree anatomy in coronary computed tomography angiography. Int. J. Cardiovasc. Imaging 33(11), 1809–1819 (2017). https://doi.org/10.1007/s10554-017-1169-0

    Article  Google Scholar 

  3. Chen, L., Hatsukami, T., Hwang, J.-N., Yuan, C.: Automated intracranial artery labeling using a graph neural network and hierarchical refinement. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 76–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_8

    Chapter  Google Scholar 

  4. Hampe, N., Wolterink, J.M., Collet, C., Planken, N., Išgum, I.: Graph attention networks for segment labeling in coronary artery trees. In: Medical Imaging 2021: Image Processing, vol. 11596, pp. 410–416. SPIE (2021)

    Google Scholar 

  5. Hedblom, A.: Blood vessel segmentation for neck and head computed tomography angiography (2013)

    Google Scholar 

  6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  7. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56(6), 462–478 (1994)

    Article  Google Scholar 

  8. Maneewongvatana, S., Mount, D.M.: Analysis of approximate nearest neighbor searching with clustered point sets. arXiv preprint cs/9901013 (1999)

    Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  10. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  11. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  12. Robben, D., et al.: Simultaneous segmentation and anatomical labeling of the cerebral vasculature. Med. Image Anal. 32, 201–215 (2016)

    Article  Google Scholar 

  13. Shen, M., et al.: Automatic cerebral artery system labeling using registration and key points tracking. In: Li, G., Shen, H.T., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds.) KSEM 2020. LNCS (LNAI), vol. 12274, pp. 355–367. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55130-8_31

    Chapter  Google Scholar 

  14. Wu, D., et al.: Automated anatomical labeling of coronary arteries via bidirectional tree LSTMs. Int. J. Comput. Assist. Radiol. Surg. 14(2), 271–280 (2019). https://doi.org/10.1007/s11548-018-1884-6

    Article  Google Scholar 

  15. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, H., Zhen, X., Chi, Y., Zhang, L., Hua, X.S.: CPR-GCN: conditional partial-residual graph convolutional network in automated anatomical labeling of coronary arteries. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3803–3811 (2020)

    Google Scholar 

  17. Yao, L., et al.: Graph convolutional network based point cloud for head and neck vessel labeling. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 474–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_48

    Chapter  Google Scholar 

  18. Zhang, X., Cui, Z., Feng, J., Song, Y., Wu, D., Shen, D.: CorLab-Net: anatomical dependency-aware point-cloud learning for automatic labeling of coronary arteries. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 576–585. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_59

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC0116400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, L. et al. (2022). TaG-Net: Topology-Aware Graph Network for Vessel Labeling. In: Manfredi, L., et al. Imaging Systems for GI Endoscopy, and Graphs in Biomedical Image Analysis. ISGIE GRAIL 2022 2022. Lecture Notes in Computer Science, vol 13754. Springer, Cham. https://doi.org/10.1007/978-3-031-21083-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21083-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21082-2

  • Online ISBN: 978-3-031-21083-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics