Skip to main content

Diversity and Biogeography of Soil Bacterial Communities

  • Chapter
  • First Online:
Climate Change and Microbiome Dynamics

Part of the book series: Climate Change Management ((CCM))

  • 558 Accesses

Abstract

Soil microbial communities are essential for crucial soil activities such as litter decomposition, nitrogen cycling, and plant productivity, which are necessary for human health. The scientific knowledge of microbial biogeography is woefully lacking when it appears to soil bacteria, despite the widespread expectation that soil bacterial communities directly impact many ecosystem processes. Researchers are becoming increasingly interested in the global distribution of soil microbes and the influence of environmental change at the regional level. This is because of the high microbial diversity that soils contain and their important role in biogeochemical cycling. As a result, we now know that the bacterial diversity of soil is high, and the composition and diversity of soil bacterial communities change with various biological and non-biological stresses. The full range of microbial diversity can now be analyzed using ribosomal DNA. Such research could also shed light on the environmental factors influencing microbial community change. These more accurate models could anticipate the temporal-spatial dynamics of soil biodiversity and ecosystem functions in changing contexts, which could help with soil biodiversity conservation and ecological function presentation in the face of future climate change. Such knowledge could aid humans in coping with future environmental changes and increase our ability to predict microbial communities accurately and their function in a changing world. We propose the following difficulties and research opportunities for future microbial biogeographic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cameron EK, Martins IS, Lavelle P, Mathieu J, Tedersoo L, Gottschall F, Guerra CA, Hines J, Patoine G, Siebert J, Winter M (2018) Global gaps in soil biodiversity data. Nat Ecol Evol 2(7):1042–1043

    Google Scholar 

  2. Coyle DR, Nagendra UJ, Taylor MK, Campbell JH, Cunard CE, Joslin AH, Mundepi A, Phillips CA, Callaham Jr MA (2017) Soil fauna responses to natural disturbances, invasive species, and global climate change: current state of the science and a call to action. Soil Biol Biochem 110:116–133

    Google Scholar 

  3. Qiu SL, Wang LM, Huang DF, Lin XJ (2014) Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity 74(3):333–339

    Google Scholar 

  4. Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    Google Scholar 

  5. Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press

    Google Scholar 

  6. Dhuldhaj UP, Malik N (2022) Global perspective of phosphate soliloquizing microbes and phosphatase for improvement of soil, food and human health. Cell Mol Biomed Rep 2(3):173–186. https://doi.org/10.55705/cmbr.2022.347523.1048

  7. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2):e00063-16

    Google Scholar 

  8. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    Google Scholar 

  9. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    Google Scholar 

  10. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77(3):342–356

    Google Scholar 

  11. Broughton L, Gross KJO (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field 125(3):420–427

    Google Scholar 

  12. Liu Z, Fu B, Zheng X, Liu G (2010) Plant biomass, soil water content and soil N: P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study. Soil Biol Biochem 42(3):445–450

    Google Scholar 

  13. Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78(20):7398–7406

    Google Scholar 

  14. Stephan A, Meyer AH, Schmid B (2000) Plant diversity positively affects soil bacterial diversity in experimental grassland ecosystems 88:988–998

    Google Scholar 

  15. Wardle DA, Bardgett RD, Klironomos JN, Setala H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633

    Google Scholar 

  16. Kheyrodin H, Jami R, Rehman FU (2022) Cellular structure and molecular functions of plants, animals, bacteria, and viruses. Cell Mol Biomed Rep 2(1):33–41. https://doi.org/10.55705/cmbr.2022.330941.1021

  17. Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66(12):5448–5456

    Google Scholar 

  18. Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68(1):326–334

    Google Scholar 

  19. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environm Microbiol 9(11):2670–2682

    Google Scholar 

  20. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4(2):102–112

    Google Scholar 

  21. Martiny JB, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci 108(19):7850–7854

    Google Scholar 

  22. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10(7):497–506

    Google Scholar 

  23. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci 111(17):6341–6346

    Google Scholar 

  24. Kivlin SN, Fei S, Kalisz S, Averill C (2020) Microbial ecology meets macroecology. Bull Ecol Soc Am 101(1):1–4

    Google Scholar 

  25. Borneman J, Skroch PW, O'Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62(6):1935–1943

    Google Scholar 

  26. Ogram A (2000) Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biol Biochem 32(11–12):1499–1504

    Google Scholar 

  27. Chapman SK, Koch GW (2007) What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil 299(1):153–162

    Google Scholar 

  28. Costa AL, Paixão SM, Caçador I, Carolino M (2007) CLPP and EEA profiles of microbial communities in salt marsh sediments. J Soils Sediments 7(6):418–425

    Google Scholar 

  29. Lagomarsino A, Knapp BA, Moscatelli MC, De Angelis P, Grego S, Insam H (2007) Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation. J Soils Sediments 7(6):399–405

    Google Scholar 

  30. Martins-Loução MA, Cruz C (2007) microbial communities. J Soils Sediments 7(6):398

    Google Scholar 

  31. Winding A, Hendriksen NB (2007) Comparison of CLPP and enzyme activity assay for functional characterization of bacterial soil communities. J Soils Sediments 7(6):411–417

    Google Scholar 

  32. Xu Q, Jiang P, Xu Z (2008) Soil microbial functional diversity under intensively managed bamboo plantations in southern China. J Soils Sediments 8(3):177–183

    Google Scholar 

  33. Xu Z, Ward S, Chen C, Blumfield T, Prasolova N, Liu J (2008) Soil carbon and nutrient pools, microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia. J Soils Sediments 8(2):99–105.

    Google Scholar 

  34. Rocha FP, Ronque MU, Lyra ML, Bacci M, Oliveira PS (2022) Habitat and host species drive the structure of bacterial communities of two neotropical trap-jaw odontomachus ants. Microb Ecol 1–14

    Google Scholar 

  35. Whittaker RH (1956) Vegetation of the great smoky mountains. Ecol Monogr 26(1):2–80

    Google Scholar 

  36. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10

    Google Scholar 

  37. Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, Green JL, Eisen JA, Pollard KS (2011) PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol 7(1):e1001061

    Google Scholar 

  38. Astorga A, Oksanen J, Luoto M, Soininen J, Virtanen R, Muotka T (2012) Distance decay of similarity in freshwater communities: do macro‐and microorganisms follow the same rules?. Glob Ecol Biogeogr 21(3):365–375

    Google Scholar 

  39. Renner SS, Lomolino MV, Riddle BR, Brown JH (2006) Biogeography, society of systematic zoology

    Google Scholar 

  40. Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432(7018):747–750

    Google Scholar 

  41. Hillebrand H, Watermann F, Karez R, Berninger UG (2001) Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126(1):114–124

    Google Scholar 

  42. Horner-Devine MC, Lage M, Hughes JB, Bohannan BJ (2004) A taxa–area relationship for bacteria. Nature 432(7018):750–753

    Google Scholar 

  43. Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv 7(2):129–146

    Google Scholar 

  44. Simberloff D, Abele LG (1982) Refuge design and island biogeographic theory: effects of fragmentation. Am Nat 120(1):41–50

    Google Scholar 

  45. Soule ME, Simberloff D (1986) What do genetics and ecology tell us about the design of nature reserves?. Biol Conserv 35(1):19–40

    Google Scholar 

  46. Woodcock S, Curtis TP, Head IM, Lunn M, Sloan WT (2006) Taxa–area relationships for microbes: the unsampled and the unseen. Ecol Lett 9(7):805–812

    Google Scholar 

  47. Franklin RB, Mills AL (2003) Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44(3):335–346

    Google Scholar 

  48. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26(4):867–878

    Google Scholar 

  49. Condit R, Pitman N, Leigh Jr EG, Chave J, Terborgh J, Foster RB, Núnez P, Aguilar S, Valencia R, Villa G (2002) Beta-diversity in tropical forest trees. Science 295(5555):666–669

    Google Scholar 

  50. Preston EW (1960) Time and space and the variation of species. Ecology 41(4):612–627

    Google Scholar 

  51. Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5(8):650–659

    Google Scholar 

  52. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301(5635):976–978

    Google Scholar 

  53. Bell T (2010) Experimental tests of the bacterial distance–decay relationship. ISME J 4(11):1357–1365

    Google Scholar 

  54. Chu H, Gao GF, Ma Y, Fan K, Delgado-Baquerizo M (2020) Soil microbial biogeography in a changing world: recent advances and future perspectives. MSystems 5(2):e00803–e00819

    Google Scholar 

  55. Sherry TW, Kent CM (2022) Extensions and limitations of MacArthur (1958): a review of ecological and evolutionary approaches to competition and diet in the New World wood warblers (Parulidae). Ornithology 139(2):ukac010

    Google Scholar 

  56. Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, Tunlid A, Hagström Å (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16(4):867–880

    Google Scholar 

  57. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci 105(22):7774–7778

    Google Scholar 

  58. Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?. Front Microbiol 7:214

    Google Scholar 

  59. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337(6092):349–351

    Google Scholar 

  60. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ, Ursell L, Alm EJ, Birmingham A (2016) Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10(7):1669–1681

    Google Scholar 

  61. Röttjers L, Faust K (2018) From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol Rev 42(6):761–780

    Google Scholar 

  62. Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6(2):343–351

    Google Scholar 

  63. He D, Shen W, Eberwein J, Zhao Q, Ren L, Wu QL (2017) Biochemistry, Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biol Biochem 115:499–510

    Google Scholar 

  64. de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 9(1):1–12

    Google Scholar 

  65. Delgado‐Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, Singh BK, Bissett A (2018) Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99(3):583–596

    Google Scholar 

  66. Banerjee S, Schlaeppi K, van der Heijden MG (2019) Reply to ‘Can we predict microbial keystones?’ 17(3):194–194

    Google Scholar 

  67. Röttjers L, Faust K (2019) Can we predict keystones?. Nature 17(3):193–193

    Google Scholar 

  68. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853–856

    Google Scholar 

  69. Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biogeogr 22(2):149–162

    Google Scholar 

  70. Lv X, Zhao K, Xue R, Liu Y, Xu J, Ma B (2019) Strengthening insights in microbial ecological networks from theory to applications. MSystems 4(3):e00124-19

    Google Scholar 

  71. Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron PA (2013) Loss in microbial diversity affects nitrogen cycling in soil. IME J 7(8):1609–1619

    Google Scholar 

  72. Wagg C, Bender SF, Widmer F, Van Der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci 111(14):5266–5270

    Google Scholar 

  73. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7(1):1–8

    Google Scholar 

  74. Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM (2011) Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92(2):296–303

    Google Scholar 

  75. Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Google Scholar 

  76. Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NP, Peacock SJ, Hay SI (2016) Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 1(1):1–5

    Google Scholar 

  77. Nelson MB, Martiny AC, Martiny JB (2016) Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci 113(29):8033–8040

    Google Scholar 

  78. Delgado‐Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017) Microbial richness and composition independently drive soil multifunctionality. Funct Ecol 31(12):2330–2343

    Google Scholar 

  79. Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MG (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10(1):1–10

    Google Scholar 

  80. Martinez-Alonso E, Pena-Perez S, Serrano S, Garcia-Lopez E, Alcazar A, Cid C (2019) Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 9(1):1–14

    Google Scholar 

  81. Jaswal R, Pathak A, Chauhan A (2019) Metagenomic evaluation of bacterial and fungal assemblages enriched within diffusion chambers and microbial traps containing uraniferous soils. Microorganisms 7(9):324

    Google Scholar 

  82. Swenson TL, Karaoz U, Swenson JM, Bowen BP, Northen TR (2018) Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat Commun 9(1):1–10

    Google Scholar 

  83. Bastida F, Crowther TW, Prieto I, Routh D, García C, Jehmlich N (2018) Climate shapes the protein abundance of dominant soil bacteria. Sci Total Environ 640:18–21

    Google Scholar 

  84. Delgado-Baquerizo M, Eldridge DJ (2019) Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems 22(6):1220–1231

    Google Scholar 

  85. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359(6373):320–325

    Google Scholar 

  86. Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10(1):1–9

    Google Scholar 

  87. Van Den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, De Goede RG, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD (2019) Soil nematode abundance and functional group composition at a global scale. Nature 572(7768):194–198

    Google Scholar 

  88. Bastida F, Eldridge DJ, Abades S, Alfaro FD, Gallardo A, García‐Velázquez L, García C, Hart SC, Pérez CA, Santos F, Trivedi P (2020) Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol Ecol 29(4):752–761

    Google Scholar 

  89. Phillips HR, Guerra CA, Bartz ML, Briones MJ, Brown G, Crowther TW, Ferlian O, Gongalsky KB, Van Den Hoogen J, Krebs J, Orgiazzi A (2019) Global distribution of earthworm diversity. Science 366(6464):480–485

    Google Scholar 

  90. Steidinger BS, Crowther TW, Liang J, Van Nuland ME, Werner GD, Reich PB, Nabuurs GJ, de-Miguel S, Zhou M, Picard N, Herault B (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569(7756):404–408

    Google Scholar 

  91. Delgado-Baquerizo M (2019) Obscure soil microbes and where to find them. ISME J 13(8):2120–2124

    Google Scholar 

  92. Ferrier S, Manion G, Elith J, Richardson K (2007) distributions, Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13(3):252–264

    Google Scholar 

  93. Bru D, Ramette A, Saby NP, Dequiedt S, Ranjard L, Jolivet C, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5(3):532–542

    Google Scholar 

  94. Terrat S, Horrigue W, Dequietd S, Saby NP, Lelièvre M, Nowak V, Tripied J, Régnier T, Jolivet C, Arrouays D, Wincker P (2017) Mapping and predictive variations of soil bacterial richness across France. PloS One 12(10):e0186766

    Google Scholar 

  95. Karimi B, Terrat S, Dequiedt S, Saby NP, Horrigue W, Lelièvre M, Nowak V, Jolivet C, Arrouays D, Wincker P, Cruaud C (2018) Biogeography of soil bacteria and archaea across France. Sci Adv 4(7):eaat1808

    Google Scholar 

  96. Griffiths RI, Thomson BC, Plassart P, Gweon HS, Stone D, Creamer RE, Lemanceau P, Bailey MJ (2016) Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets. Appl Soil Ecol 97:61–68

    Google Scholar 

  97. Jiao S, Xu Y, Zhang J, Lu Y (2019) Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7(1):1–13

    Google Scholar 

  98. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688

    Google Scholar 

  99. Johnson MJ, Lee KY, Scow KM (2003) DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114(3–4):279–303

    Google Scholar 

  100. Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5(5):384–392

    Google Scholar 

  101. Woese CR (1994) There must be a prokaryote somewhere: microbiology's search for itself. Microbiol Rev 58(1):1–9

    Google Scholar 

  102. Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72(11):7286–7293

    Google Scholar 

  103. Boucher Y, Nesbø CL, Doolittle WF (2001) Microbial genomes: dealing with diversity. Curr Opin Microbiol 4(3):285–289

    Google Scholar 

  104. Abby S, Daubin V (2007) Comparative genomics and the evolution of prokaryotes. Trends Microbiol 15(3):135–141

    Google Scholar 

  105. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2(8):805–814

    Google Scholar 

  106. Burton J, Chen C, Xu Z, Ghadiri H (2010) Sediments, Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. J Soils Sediments 10(7):1267–1277

    Google Scholar 

  107. Chatterjee A, Vance GF, Pendall E, Stahl PD (2008) Biochemistry, Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests. Soil Biol Bioche 40(7):1901–1907

    Google Scholar 

  108. Ushio M, Wagai R, Balser TC, Kitayama K (2008) Variations in the soil microbial community composition of a tropical montane forest ecosystem: does tree species matter?. Soil Biol Biochem 40(10):2699–2702

    Google Scholar 

  109. Oh YM, Kim M, Lee-Cruz L, Lai-Hoe A, Go R, Ainuddin N, Rahim RA, Shukor N, Adams JM (2012) Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microb Ecol 64(4):1018–1027

    Google Scholar 

  110. Quideau SA, Chadwick OA, Benesi A, Graham RC, Anderson MA (2001) A direct link between forest vegetation type and soil organic matter composition. Geoderma 104(1–2):41–60

    Google Scholar 

  111. Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37(6):1157–1167

    Google Scholar 

  112. Sowerby A, Emmett B, Beier C, Tietema A, Peñuelas J, Estiarte M, Van Meeteren MJ, Hughes S, Freeman C (2005) Biochemistry, Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biol Biochem 37(10):1805–1813

    Google Scholar 

  113. Nielsen UN, Osler GH, Campbell CD, Burslem DF, van der Wal R (2010) The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J Biogeogr 37(7):1317–1328

    Google Scholar 

  114. Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15(1):25–36

    Google Scholar 

  115. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annual Rev Microbiol 57(1):369–394

    Google Scholar 

  116. Ritz K (2007) The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol 60(3):358–362

    Google Scholar 

  117. Trevors JT (1998) Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air Soil Pollut 101(1):45–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Aghaei Dargiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dargiri, S.A., Movahedi, A. (2023). Diversity and Biogeography of Soil Bacterial Communities. In: Parray, J.A. (eds) Climate Change and Microbiome Dynamics. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-031-21079-2_1

Download citation

Publish with us

Policies and ethics