Skip to main content

Iatrogenic Conditions

  • Chapter
  • First Online:
The Thorax

Abstract

Over a thousand medications are known to have the potential to result in lung injury. The constant development of new pharmaceuticals capable of inducing lung damage has grown to a point where it is a challenge to update the information. Fortunately, a comprehensive catalog can be found in the International Database “Pneumotox” (www.pneumotox.com). In this initiative, the imaging characteristics and/or suspected substance can be thoroughly researched, including common and unusual manifestations. It is important to be aware of the medication groups most likely to be associated with lung injury: antineoplastic drugs, antirheumatic medications, antibiotics, nonsteroidal anti-inflammatory agents (NSAIDs), antipsychotics, and antiarrhythmics. In the oncologic setting, it is important to be familiar with the variety of treatment-related side effects to avoid misinterpretation as tumor progression and to ensure appropriate management. Treatment options include chemotherapy, targeted therapy, immunotherapy, and radiation therapy. While recent advances in high-precision radiation therapy techniques such as stereotactic body radiotherapy (SBRT), intensity-modulated radiotherapy (IMRT), and proton therapy (PT) have decreased the radiation dose to normal tissues during treatment, radiation-induced lung injury usually occurs to some degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skeoch S, Weatherley N, Swift AJ, et al. Drug-induced interstitial lung disease: a systematic review. J Clin Med. 2018;7:356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsumoto K, Nakao S, Hasegawa S, et al. Analysis of drug-induced interstitial lung disease using the Japanese adverse drug event report database. SAGE Open Med. 2020;8:2050312120918264.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taylor CR. Diagnostic imaging techniques in the evaluation of drug-induced pulmonary disease. Clin Chest Med. 1990;11:87–94.

    Article  CAS  PubMed  Google Scholar 

  4. Montani D, Seferian A, Savale L, Simonneau G, Humbert M. Drug-induced pulmonary arterial hypertension: a recent outbreak. Eur Respir Rev. 2013;22:244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Padley SP, Adler B, Hansell DM, Muller NL. High-resolution computed tomography of drug-induced lung disease. Clin Radiol. 1992;46:232–6.

    Article  CAS  PubMed  Google Scholar 

  6. Tamura M, Saraya T, Fujiwara M, et al. High-resolution computed tomography findings for patients with drug-induced pulmonary toxicity, with special reference to hypersensitivity pneumonitis-like patterns in gemcitabine-induced cases. Oncologist. 2013;18:454–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cooper JA Jr, White DA, Matthay RA. Drug-induced pulmonary disease. Part 2: noncytotoxic drugs. Am Rev Respir Dis. 1986;133:488–505.

    CAS  PubMed  Google Scholar 

  8. Cooper JA Jr, White DA, Matthay RA. Drug-induced pulmonary disease. Part 1: cytotoxic drugs. Am Rev Respir Dis. 1986;133:321–40.

    CAS  PubMed  Google Scholar 

  9. Piciucchi S, Romagnoli M, Chilosi M, et al. Prospective evaluation of drug-induced lung toxicity with high-resolution CT and transbronchial biopsy. Radiol Med. 2011;116:246–63.

    Article  CAS  PubMed  Google Scholar 

  10. Distefano G, Fanzone L, Palermo M, et al. HRCT patterns of drug-induced interstitial lung diseases: a review. Diagnostics (Basel). 2020;10:244.

    Article  CAS  PubMed  Google Scholar 

  11. Nishino M, Hatabu H, Hodi FS, Ramaiya NH. Drug-related pneumonitis in the era of precision cancer therapy. JCO Precis Oncol. 2017;1:PO.17.00026.

    PubMed  PubMed Central  Google Scholar 

  12. Elliot TL, Lynch DA, Newell JD, et al. High-resolution computed tomography features of nonspecific interstitial pneumonia and usual interstitial pneumonia. J Comput Assist Tomogr. 2005;29:339–45.

    Article  PubMed  Google Scholar 

  13. Cleverley JR, Screaton NJ, Hiorns MP, Flint JD, Muller NL. Drug-induced lung disease: high-resolution CT and histological findings. Clin Radiol. 2002;57:292–9.

    Article  PubMed  Google Scholar 

  14. Reed CR, Glauser FL. Drug-induced noncardiogenic pulmonary edema. Chest. 1991;100:1120–4.

    Article  CAS  PubMed  Google Scholar 

  15. Haaland A, Warman E, Pushkar I, Likourezos A, Friedman MS. Isolated non-cardiogenic pulmonary edema - a rare complication of MDMA toxicity. Am J Emerg Med. 2017;35(1385):e3–6.

    Google Scholar 

  16. Lee-Chiong T Jr, Matthay RA. Drug-induced pulmonary edema and acute respiratory distress syndrome. Clin Chest Med. 2004;25:95–104.

    Article  PubMed  Google Scholar 

  17. Morrison DA, Goldman AL. Radiographic patterns of drug-induced lung diseases. Radiology. 1979;131:299–304.

    Article  CAS  PubMed  Google Scholar 

  18. Camus P, Rosenow IE. Drug-induced and iatrogenic respiratory disease. London: Taylor & Francis Group; 2010.

    Book  Google Scholar 

  19. Chetty KG, Ramirez MM, Mahutte CK. Drug-induced pulmonary edema in a patient infected with human immunodeficiency virus. Chest. 1993;104:967–9.

    Article  CAS  PubMed  Google Scholar 

  20. Elicker BM, Webb WR. Fundamentals of high-resolution lung CT: common findings, common patterns, common diseases and differential diagnosis. Philadelphia: Wolters Kluwer; 2018.

    Google Scholar 

  21. Pietra GG. Pathologic mechanisms of drug-induced lung disorders. J Thorac Imaging. 1991;6:1–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rossi SE, Erasmus JJ, McAdams HP, Sporn TA, Goodman PC. Pulmonary drug toxicity: radiologic and pathologic manifestations. Radiographics. 2000;20:1245–59.

    Article  CAS  PubMed  Google Scholar 

  23. Lindell RM, Hartman TE. Chest imaging in iatrogenic respiratory disease. Clin Chest Med. 2004;25:15–24.

    Article  PubMed  Google Scholar 

  24. Kligerman SJ, Franks TJ, Galvin JR. From the radiologic pathology archives: organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia. Radiographics. 2013;33:1951–75.

    Article  PubMed  Google Scholar 

  25. Kaarteenaho R, Kinnula VL. Diffuse alveolar damage: a common phenomenon in progressive interstitial lung disorders. Pulm Med. 2011;2011:531302.

    Article  PubMed  Google Scholar 

  26. Rouby JJ, Puybasset L, Nieszkowska A, Lu Q. Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Crit Care Med. 2003;31:S285–95.

    Article  PubMed  Google Scholar 

  27. Smith GJ. The histopathology of pulmonary reactions to drugs. Clin Chest Med. 1990;11:95–117.

    Article  CAS  PubMed  Google Scholar 

  28. Sakai F, Johkoh T, Kusumoto M, Arakawa H, Takahashi M. Drug-induced interstitial lung disease in molecular targeted therapies: high-resolution CT findings. Int J Clin Oncol. 2012;17:542–50.

    Article  PubMed  Google Scholar 

  29. Rosenow EC 3rd, Myers JL, Swensen SJ, Pisani RJ. Drug-induced pulmonary disease. An update. Chest. 1992;102:239–50.

    Article  PubMed  Google Scholar 

  30. Epler GR. Drug-induced bronchiolitis obliterans organizing pneumonia. Clin Chest Med. 2004;25:89–94.

    Article  PubMed  Google Scholar 

  31. Epler GR. Bronchiolitis obliterans organizing pneumonia. Arch Intern Med. 2001;161:158–64.

    Article  CAS  PubMed  Google Scholar 

  32. Kroegel C, Reibetaig A, Hengst U, Mock B, Hafner D, Grahmann PR. Bilateral symmetrical upper-lobe opacities: an unusual presentation of bronchiolitis obliterans organizing pneumonia. Chest. 2000;118:863–5.

    Article  CAS  PubMed  Google Scholar 

  33. Cordier JF. Organising pneumonia. Thorax. 2000;55:318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. MlN FRS, Colman N, Paré PD. Drugs. In: Fraser RS, Müller NL, Colman N, Paré PD, editors. Diagnosis of diseases of the chest. 4th ed. Philadelphia: Saunders; 1999.

    Google Scholar 

  35. Costabel U, Guzman J, Teschler H. Bronchiolitis obliterans with organising pneumonia: outcome. Thorax. 1995;50(Suppl 1):S59–64.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Glasier CM, Siegel MJ. Multiple pulmonary nodules: unusual manifestation of bleomycin toxicity. AJR Am J Roentgenol. 1981;137:155–6.

    Article  CAS  PubMed  Google Scholar 

  37. Muller NL, Staples CA, Miller RR. Bronchiolitis obliterans organizing pneumonia: CT features in 14 patients. AJR Am J Roentgenol. 1990;154:983–7.

    Article  CAS  PubMed  Google Scholar 

  38. Murphy JM, Schnyder P, Verschakelen J, Leuenberger P, Flower CD. Linear opacities on HRCT in bronchiolitis obliterans organising pneumonia. Eur Radiol. 1999;9:1813–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ujita M, Renzoni EA, Veeraraghavan S, Wells AU, Hansell DM. Organizing pneumonia: perilobular pattern at thin-section CT. Radiology. 2004;232:757–61.

    Article  PubMed  Google Scholar 

  40. Zompatori M, Poletti V, Battista G, Diegoli M. Bronchiolitis obliterans with organizing pneumonia (BOOP), presenting as a ring-shaped opacity at HRCT (the atoll sign). A case report. Radiol Med. 1999;97:308–10.

    CAS  PubMed  Google Scholar 

  41. Schwaiblmair M, Behr W, Haeckel T, Markl B, Foerg W, Berghaus T. Drug induced interstitial lung disease. Open Respir Med J. 2012;6:63–74.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Silva CI, Muller NL. Drug-induced lung diseases: most common reaction patterns and corresponding high-resolution CT manifestations. Semin Ultrasound CT MR. 2006;27:111–6.

    Article  PubMed  Google Scholar 

  43. Tafti SF, Mokri B, Mohammadi F, Bakhshayesh-Karam M, Emami H, Masjedi MR. Comparison of clinicoradiologic manifestation of nonspecific interstitial pneumonia and usual interstitial pneumonia/idiopathic pulmonary fibrosis: a report from NRITLD. Ann Thorac Med. 2008;3:140–5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muller NL, White DA, Jiang H, Gemma A. Diagnosis and management of drug-associated interstitial lung disease. Br J Cancer. 2004;91(Suppl 2):S24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ellis SJ, Cleverley JR, Muller NL. Drug-induced lung disease: high-resolution CT findings. AJR Am J Roentgenol. 2000;175:1019–24.

    Article  CAS  PubMed  Google Scholar 

  46. Primack SL, Miller RR, Muller NL. Diffuse pulmonary hemorrhage: clinical, pathologic, and imaging features. AJR Am J Roentgenol. 1995;164:295–300.

    Article  CAS  PubMed  Google Scholar 

  47. Lichtenberger JP 3rd, Digumarthy SR, Abbott GF, Shepard JA, Sharma A. Diffuse pulmonary hemorrhage: clues to the diagnosis. Curr Probl Diagn Radiol. 2014;43:128–39.

    Article  PubMed  Google Scholar 

  48. Chopra A, Nautiyal A, Kalkanis A, Judson MA. Drug-induced sarcoidosis-like reactions. Chest. 2018;154:664–77.

    Article  PubMed  Google Scholar 

  49. Judson MA. The epidemic of drug-induced sarcoidosis-like reactions: a side effect that we can live with. J Intern Med. 2020;288:373–5.

    Article  CAS  PubMed  Google Scholar 

  50. Bronstein Y, Ng CS, Hwu P, Hwu WJ. Radiologic manifestations of immune-related adverse events in patients with metastatic melanoma undergoing anti-CTLA-4 antibody therapy. AJR Am J Roentgenol. 2011;197:W992–W1000.

    Article  PubMed  Google Scholar 

  51. Orcholski ME, Yuan K, Rajasingh C, et al. Drug-induced pulmonary arterial hypertension: a primer for clinicians and scientists. Am J Physiol Lung Cell Mol Physiol. 2018;314:L967–L83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kramer MR, Estenne M, Berkman N, et al. Radiation-induced pulmonary veno-occlusive disease. Chest. 1993;104:1282–4.

    Article  CAS  PubMed  Google Scholar 

  53. Rose AG. Pulmonary veno-occlusive disease after chemotherapy with bleomycin. Hum Pathol. 1984;15:199.

    Article  CAS  PubMed  Google Scholar 

  54. Capewell SJ, Wright AJ, Ellis DA. Pulmonary veno-occlusive disease in association with Hodgkin’s disease. Thorax. 1984;39:554–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salzman D, Adkins DR, Craig F, Freytes C, LeMaistre CF. Malignancy-associated pulmonary veno-occlusive disease: report of a case following autologous bone marrow transplantation and review. Bone Marrow Transplant. 1996;18:755–60.

    CAS  PubMed  Google Scholar 

  56. Troussard X, Bernaudin JF, Cordonnier C, et al. Pulmonary veno-occlusive disease after bone marrow transplantation. Thorax. 1984;39:956–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frazier AA, Franks TJ, Mohammed TL, Ozbudak IH, Galvin JR. From the archives of the AFIP: pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. Radiographics. 2007;27:867–82.

    Article  PubMed  Google Scholar 

  58. Shi W, Jiao Y. Pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. QJM. 2020;113:371–2.

    Article  CAS  PubMed  Google Scholar 

  59. Morelock SY, Sahn SA. Drugs and the pleura. Chest. 1999;116:212–21.

    Article  CAS  PubMed  Google Scholar 

  60. Shen M, Wang Y, Xu WB, Zeng XJ, Zhang FC. Pleuropulmonary manifestations of systemic lupus erythematosus. Zhonghua Yi Xue Za Zhi. 2005;85:3392–5.

    PubMed  Google Scholar 

  61. Shah DR, Masters GA. Precision medicine in lung cancer treatment. Surg Oncol Clin N Am. 2020;29:15–21.

    Article  PubMed  Google Scholar 

  62. Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA. 2019;322:764–74.

    Article  CAS  PubMed  Google Scholar 

  63. Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4:36–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Oxnard GR, Arcila ME, Sima CS, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin Cancer Res. 2011;17:1616–22.

    Article  CAS  PubMed  Google Scholar 

  65. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    Article  CAS  PubMed  Google Scholar 

  66. Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-Pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376:629–40.

    Article  CAS  PubMed  Google Scholar 

  67. Shaw AT, Yeap BY, Solomon BJ, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shaw AT, Gandhi L, Gadgeel S, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17:234–42.

    Article  CAS  PubMed  Google Scholar 

  69. Bonnesen B, Pappot H, Holmstav J, Skov BG. Vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 expression in non-small cell lung cancer patients: relation to prognosis. Lung Cancer. 2009;66:314–8.

    Article  PubMed  Google Scholar 

  70. Garon EB, Ciuleanu TE, Arrieta O, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384:665–73.

    Article  CAS  PubMed  Google Scholar 

  71. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22:2184–91.

    Article  CAS  PubMed  Google Scholar 

  72. Nishino M, Cryer SK, Okajima Y, et al. Tumoral cavitation in patients with non-small-cell lung cancer treated with antiangiogenic therapy using bevacizumab. Cancer Imaging. 2012;12:225–35.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Marom EM, Martinez CH, Truong MT, et al. Tumor cavitation during therapy with antiangiogenesis agents in patients with lung cancer. J Thorac Oncol. 2008;3:351–7.

    Article  PubMed  Google Scholar 

  74. Crabb SJ, Patsios D, Sauerbrei E, et al. Tumor cavitation: impact on objective response evaluation in trials of angiogenesis inhibitors in non-small-cell lung cancer. J Clin Oncol. 2009;27:404–10.

    Article  CAS  PubMed  Google Scholar 

  75. Lee HY, Lee KS, Hwang HS, et al. Molecularly targeted therapy using bevacizumab for non-small cell lung cancer: a pilot study for the new CT response criteria. Korean J Radiol. 2010;11:618–26.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ding PN, Lord SJ, Gebski V, et al. Risk of treatment-related toxicities from EGFR tyrosine kinase inhibitors: a meta-analysis of clinical trials of Gefitinib, Erlotinib, and Afatinib in advanced EGFR-mutated non-small cell lung cancer. J Thorac Oncol. 2017;12:633–43.

    Article  PubMed  Google Scholar 

  77. Min JH, Lee HY, Lim H, et al. Drug-induced interstitial lung disease in tyrosine kinase inhibitor therapy for non-small cell lung cancer: a review on current insight. Cancer Chemother Pharmacol. 2011;68:1099–109.

    Article  CAS  PubMed  Google Scholar 

  78. Travis WD, Costabel U, Hansell DM, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733–48.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Souza FF, Smith A, Araujo C, et al. New targeted molecular therapies for cancer: radiological response in intrathoracic malignancies and cardiopulmonary toxicity: what the radiologist needs to know. Cancer Imaging. 2014;14:26.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Thornton E, Howard SA, Jagannathan J, et al. Imaging features of bowel toxicities in the setting of molecular targeted therapies in cancer patients. Br J Radiol. 2012;85:1420–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Howard SA, Rosenthal MH, Jagannathan JP, et al. Beyond the vascular endothelial growth factor axis: update on role of imaging in nonantiangiogenic molecular targeted therapies in oncology. AJR Am J Roentgenol. 2015;204:919–32.

    Article  PubMed  Google Scholar 

  82. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kwak JJ, Tirumani SH, Van den Abbeele AD, Koo PJ, Jacene HA. Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. Radiographics. 2015;35:424–37.

    Article  PubMed  Google Scholar 

  84. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haanen J, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv119–42.

    Article  CAS  PubMed  Google Scholar 

  86. Carter BW, Halpenny DF, Ginsberg MS, Papadimitrakopoulou VA, de Groot PM. Immunotherapy in non-small cell lung cancer treatment: current status and the role of imaging. J Thorac Imaging. 2017;32:300–12.

    Article  PubMed  Google Scholar 

  87. Wolchok JD, Hoos A, O'Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.

    Article  CAS  PubMed  Google Scholar 

  88. Seymour L, Bogaerts J, Perrone A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143–e52.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res. 2013;19:3936–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nishino M, Gargano M, Suda M, Ramaiya NH, Hodi FS. Optimizing immune-related tumor response assessment: does reducing the number of lesions impact response assessment in melanoma patients treated with ipilimumab? J Immunother Cancer. 2014;2:17.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hodi FS, Hwu WJ, Kefford R, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with Pembrolizumab. J Clin Oncol. 2016;34:1510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tang YZ, Szabados B, Leung C, Sahdev A. Adverse effects and radiological manifestations of new immunotherapy agents. Br J Radiol. 2019;92:20180164.

    Article  PubMed  Google Scholar 

  93. Nishino M, Dahlberg SE, Adeni AE, et al. Tumor response dynamics of advanced non-small cell lung cancer patients treated with PD-1 inhibitors: imaging markers for treatment outcome. Clin Cancer Res. 2017;23:5737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of Nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fuentes-Antras J, Provencio M, Diaz-Rubio E. Hyperprogression as a distinct outcome after immunotherapy. Cancer Treat Rev. 2018;70:16–21.

    Article  CAS  PubMed  Google Scholar 

  96. Frelaut M, Le Tourneau C, Borcoman E. Hyperprogression under immunotherapy. Int J Mol Sci. 2019;20, 2674

    Google Scholar 

  97. Borcoman E, Kanjanapan Y, Champiat S, et al. Novel patterns of response under immunotherapy. Ann Oncol. 2019;30:385–96.

    Article  CAS  PubMed  Google Scholar 

  98. Boutros C, Tarhini A, Routier E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016;13:473–86.

    Article  CAS  PubMed  Google Scholar 

  99. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.

    Article  CAS  PubMed  Google Scholar 

  100. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2018;36:1714–68.

    Article  CAS  PubMed  Google Scholar 

  101. Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of cancer (SITC) toxicity management working group. J Immunother Cancer. 2017;5:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang GX, Kurra V, Gainor JF, et al. Immune checkpoint inhibitor cancer therapy: spectrum of imaging findings. Radiographics. 2017;37:2132–44.

    Article  PubMed  Google Scholar 

  103. Naidoo J, Wang X, Woo KM, et al. Pneumonitis in patients treated with anti-programmed Death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35:709–17.

    Article  CAS  PubMed  Google Scholar 

  104. Chuzi S, Tavora F, Cruz M, et al. Clinical features, diagnostic challenges, and management strategies in checkpoint inhibitor-related pneumonitis. Cancer Manag Res. 2017;9:207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Khunger M, Rakshit S, Pasupuleti V, et al. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest. 2017;152:271–81.

    Article  PubMed  Google Scholar 

  106. Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer. Lung Cancer. 2018;125:150–6.

    Article  PubMed  Google Scholar 

  107. Nishino M, Hatabu H, Hodi FS. Imaging of cancer immunotherapy: current approaches and future directions. Radiology. 2019;290:9–22.

    Article  PubMed  Google Scholar 

  108. Gkiozos I, Kopitopoulou A, Kalkanis A, Vamvakaris IN, Judson MA, Syrigos KN. Sarcoidosis-like reactions induced by checkpoint inhibitors. J Thorac Oncol. 2018;13:1076–82.

    Article  CAS  PubMed  Google Scholar 

  109. Tirumani SH, Ramaiya NH, Keraliya A, et al. Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with Ipilimumab. Cancer Immunol Res. 2015;3:1185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nishino M, Sholl LM, Awad MM, Hatabu H, Armand P, Hodi FS. Sarcoid-like granulomatosis of the lung related to immune-checkpoint inhibitors: distinct clinical and imaging features of a unique immune-related adverse event. Cancer Immunol Res. 2018;6:630–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Murphy KP, Kennedy MP, Barry JE, O'Regan KN, Power DG. New-onset mediastinal and central nervous system sarcoidosis in a patient with metastatic melanoma undergoing CTLA4 monoclonal antibody treatment. Oncol Res Treat. 2014;37:351–3.

    Article  CAS  PubMed  Google Scholar 

  112. Andersen R, Norgaard P, Al-Jailawi MK, Svane IM. Late development of splenic sarcoidosis-like lesions in a patient with metastatic melanoma and long-lasting clinical response to ipilimumab. Onco Targets Ther. 2014;3:e954506.

    Google Scholar 

  113. Altan M, Toki MI, Gettinger SN, et al. Immune checkpoint inhibitor-associated pericarditis. J Thorac Oncol. 2019;14:1102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Loffler AI, Salerno M. Cardiac MRI for the evaluation of oncologic cardiotoxicity. J Nucl Cardiol. 2018;25:2148–58.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018;391:933.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Junker K, Thomas M, Schulman K, et al. Tumour regression in non-small-cell lung cancer following neoadjuvant therapy. Histological assessment. J Cancer Res Clin Oncol. 1997;123:469–77.

    Article  CAS  PubMed  Google Scholar 

  117. Liu-Jarin X, Stoopler MB, Raftopoulos H, et al. Histologic assessment of non-small cell lung carcinoma after neoadjuvant therapy. Mod Pathol. 2003;16:1102–8.

    Article  PubMed  Google Scholar 

  118. Yamane Y, Ishii G, Goto K, et al. A novel histopathological evaluation method predicting the outcome of non-small cell lung cancer treated by neoadjuvant therapy. J Thorac Oncol. 2010;5:49–55.

    Article  PubMed  Google Scholar 

  119. Hellmann MD, Chaft JE, William WN, et al. Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol. 2014;15:e42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pataer A, Kalhor N, Correa AM, et al. Histopathologic response criteria predict survival of patients with resected lung cancer after neoadjuvant chemotherapy. J Thorac Oncol. 2012;7:825–32.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Forde PM, Chaft JE, Smith KN, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. NEJM. 2018;378:1976–86.

    Article  CAS  PubMed  Google Scholar 

  122. Cottrell TR, Thompson ED, Forde PM, et al. Pathologic features of response to neoadjuvant anti PD-1 in resected non-small cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPCR). Ann Oncol. 2018;0:1–8.

    Google Scholar 

  123. Weissferdt A, Pataer A, Vaporciyan AA, et al. Agreement on major pathological response in NSCLC patients receiving neoadjuvant chemotherapy. Clin Lung Cancer. 2020;21:341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oramas DM, Moran CA. Major pathological response in patients treated for non-small cell carcinoma of the lung: is there a magic number in the histologic sections to be examined? Adv Anat Pathol. 2021;28:67–71.

    Article  CAS  PubMed  Google Scholar 

  125. Rahi MS, Parekh J, Pednekar P, et al. Radiation-induced lung injury-current perspectives and management. Clin Pract. 2021;11:410–29.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Strange CD, Shroff GS, Truong MT, Nguyen QN, Vlahos I, Erasmus JJ. Imaging of the post-radiation chest in lung cancer. Clin Radiol. 2022;77(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  127. Park KJ, Chung JY, Chun MS, Suh JH. Radiation-induced lung disease and the impact of radiation methods on imaging features. Radiographics. 2000;20:83–98.

    Article  CAS  PubMed  Google Scholar 

  128. Choi YW, Munden RF, Erasmus JJ, et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics. 2004;24:985–97; discussion 98.

    Article  PubMed  Google Scholar 

  129. Libshitz HI, Shuman LS. Radiation-induced pulmonary change: CT findings. J Comput Assist Tomogr. 1984;8:15–9.

    Article  PubMed  Google Scholar 

  130. Arroyo-Hernandez M, Maldonado F, Lozano-Ruiz F, Munoz-Montano W, Nunez-Baez M, Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm Med. 2021;21:9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mylene T. Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palacio, D., Jayagurunathan, U., Shroff, G.S., de Groot, P.M., Truong, M.T., Moran, C.A. (2023). Iatrogenic Conditions. In: Moran, C.A., Truong, M.T., de Groot, P.M. (eds) The Thorax. Springer, Cham. https://doi.org/10.1007/978-3-031-21040-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21040-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21039-6

  • Online ISBN: 978-3-031-21040-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics