Skip to main content

A Framework for Extracting and Encoding Features from Object-Centric Event Data

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2022)


Traditional process mining techniques take event data as input where each event is associated with exactly one object. An object represents the instantiation of a process. Object-centric event data contain events associated with multiple objects expressing the interaction of multiple processes. As traditional process mining techniques assume events associated with exactly one object, these techniques cannot be applied to object-centric event data. To use traditional process mining techniques, object-centric event data are flattened by removing all object references but one. The flattening process is lossy, leading to inaccurate features extracted from flattened data. Furthermore, the graph-like structure of object-centric event data is lost when flattening. In this paper, we introduce a general framework for extracting and encoding features from object-centric event data. We calculate features natively on the object-centric event data, leading to accurate measures. Furthermore, we provide three encodings for these features: tabular, sequential, and graph-based. While tabular and sequential encodings have been heavily used in process mining, the graph-based encoding is a new technique preserving the structure of the object-centric event data. We provide six use cases: a visualization and a prediction use case for each of the three encodings. We use explainable AI in the prediction use cases to show the utility of both the object-centric features and the structure of the sequential and graph-based encoding for a predictive model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

  2. 2.


  1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016).

  2. Ölveczky, P.C., Salaün, G. (eds.): SEFM 2019. LNCS, vol. 11724. Springer, Cham (2019).

    Book  MATH  Google Scholar 

  3. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam. Informaticae 175(1–4), 1–40 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  4. Adams, J.N., van der Aalst, W.M.P.: Precision and fitness in object-centric process mining. In: ICPM, pp. 128–135. IEEE (2021).

  5. Adams, J.N., van der Aalst, W.M.P.: Oc\(\pi \): object-centric process insights. In: Bernardinello, L., Petrucci, L. (eds.) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2022. Lecture Notes in Computer Science, vol. 13288, pp. 139–150. Springer, Cham (2022).

  6. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.P.: Defining cases and variants for object-centric event data. CoRR abs/2208.03235, 10.48550/arXiv.2208.03235 (2022)

    Google Scholar 

  7. Becker, J., Breuker, D., Delfmann, P., Matzner, M.: Designing and implementing a framework for event-based predictive modelling of business processes. In: EMISA, pp. 71–84. GI (2014)

    Google Scholar 

  8. van Dongen, B.: BPI challenge 2017 (2017).

  9. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008).

    Chapter  Google Scholar 

  10. Ehrendorfer, M., Mangler, J., Rinderle-Ma, S.: Assessing the impact of context data on process outcomes during runtime. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 3–18. Springer, Cham (2021).

    Chapter  Google Scholar 

  11. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10(1–2), 109–141 (2021).

    Article  Google Scholar 

  12. Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017).

    Article  Google Scholar 

  13. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  14. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W.: Predictive business process monitoring framework with hyperparameter optimization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 361–376. Springer, Cham (2016).

    Chapter  Google Scholar 

  15. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable predictive process monitoring. In: ICPM, pp. 1–8. IEEE (2020).

  16. Harl, M., Weinzierl, S., Stierle, M., Matzner, M.: Explainable predictive business process monitoring using gated graph neural networks. J. Decis. Syst. 29(sup1), 312–327 (2020).

    Article  Google Scholar 

  17. Huang, T.H., Metzger, A., Pohl, K.: Counterfactual explanations for predictive business process monitoring. In: Themistocleous, M., Papadaki, M. (eds.) Information Systems. EMCIS 2021. Lecture Notes in Business Information Processing, vol. 437, pp. 399–413. Springer, Cham (2022).

  18. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016).

    Article  Google Scholar 

  19. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015).

    Chapter  Google Scholar 

  20. Li, C.-Y., van Zelst, S.J., van der Aalst, W.M.P.: Stage-based process performance analysis. In: Hacid, H., et al. (eds.) ICSOC 2020. LNCS, vol. 12632, pp. 349–364. Springer, Cham (2021).

    Chapter  Google Scholar 

  21. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NeurIPS, pp. 4765–4774 (2017)

    Google Scholar 

  22. Park, G., Adams, J.N., van der Aalst, W.M.P.: OPerA: object-centric performance analysis. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) Conceptual Modeling. ER 2022. LNCS, vol. 13607, pp. 281–292. Springer, Cham (2022).

  23. Philipp, P., et al.: Analysis of control flow graphs using graph convolutional neural networks. In: ISCMI, pp. 73–77 (2019).

  24. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013).

    Chapter  Google Scholar 

  25. Sun, Y., Bauer, B., Weidlich, M.: Compound trace clustering to generate accurate and simple sub-process models. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 175–190. Springer, Cham (2017).

    Chapter  Google Scholar 

  26. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017).

    Chapter  Google Scholar 

  27. Venugopal, I., Töllich, J., Fairbank, M., Scherp, A.: A comparison of deep-learning methods for analysing and predicting business processes. In: IJCNN, pp. 1–8 (2021).

  28. Waibel, P., Pfahlsberger, L., Revoredo, K., Mendling, J.: Causal process mining from relational databases with domain knowledge. CoRR abs/2202.08314 (2022)

    Google Scholar 

  29. Wang, C., Cao, J.: Interval-based remaining time prediction for business processes. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 34–48. Springer, Cham (2021).

    Chapter  Google Scholar 

  30. Wu, Z., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jan Niklas Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adams, J.N., Park, G., Levich, S., Schuster, D., van der Aalst, W.M.P. (2022). A Framework for Extracting and Encoding Features from Object-Centric Event Data. In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A. (eds) Service-Oriented Computing. ICSOC 2022. Lecture Notes in Computer Science, vol 13740. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20983-3

  • Online ISBN: 978-3-031-20984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics