Abstract
We study the Multi-Power variant of the RSA cryptosystem where the modulus is of the form \(N=p^rq^s\) with \(\gcd (r,s)=1\). We present a method to solve the linear equation \(a_1x_1+a_2x_2\equiv 0\pmod {p^uq^v}\) where \(u<r\), \(v<s\), and \(a_1\), \(a_2\) are two integers satisfying \(\gcd (a_1a_2,N)=1\). We apply the new method to the cryptanalysis of two instances of the Multi-Power RSA. We define a generalization of the CRT-RSA variant of the standard RSA to the Multi-Power RSA, and apply the new method to study its security. The new method is based on Coppersmith’s method and lattice reduction techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46(2), 203–213 (1999)
Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)
Coron, J.S., Zeitoun, R.: Improved factorization of \(N=p^rq^s\), Cryptology ePrint Archive, Report 2016/551 (2016). https://ia.cr/2016/551
The EPOC and the ESIGN Algorithms. IEEE P1363: Protocols from Other Families of Public-Key Algorithms (1998)
Hinek, M.: Cryptanalysis of RSA and Its Variants. Cryptography and Network Security Series, Chapman & Hall/CRC, Boca Raton (2009)
Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458
Lenstra, H.W., Jr.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)
Lim, S., Kim, S., Yie, I., Lee, H.: A generalized Takagi-cryptosystem with a modulus of the form \(p^r\)\(q^s\). In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 283–294. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44495-5_25
Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 189–213. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_9
Lu, Y., Peng, L., Sarkar, S.: Cryptanalysis of an RSA variant with moduli \(N=p^rq^l\). J. Math. Cryptol. 11(2), 117–130 (2017)
May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis, University of Paderborn (2003). http://www.cits.rub.de/imperia/md/content/may/paper/bp.ps
Schmidt-Samoa, K.: A new Rabin-type trapdoor permutation equivalent to factoring. Electron. Not. Theor. Comput. Sci. 157(3), 79–94 (2006). https://eprint.iacr.org/2005/278.pdf
May, A.: Secret exponent attacks on RSA-type schemes with moduli N=prq. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_16
Nitaj, A., Susilo, W., Tonien, J.: A generalized attack on the multi-prime power RSA. In: Batina, L., Daemen, J. (eds.) AFRICACRYPT 2022. LNCS, vol. 13503, pp. 537–549. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17433-9_23
Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054135
Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electron. Lett. 18(21), 905–907 (1982)
Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055738
Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36, 553–558 (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alquié, D., Chassé, G., Nitaj, A. (2022). Cryptanalysis of the Multi-Power RSA Cryptosystem Variant. In: Beresford, A.R., Patra, A., Bellini, E. (eds) Cryptology and Network Security. CANS 2022. Lecture Notes in Computer Science, vol 13641. Springer, Cham. https://doi.org/10.1007/978-3-031-20974-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-20974-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20973-4
Online ISBN: 978-3-031-20974-1
eBook Packages: Computer ScienceComputer Science (R0)