Skip to main content

Cryptanalysis of the Multi-Power RSA Cryptosystem Variant

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13641))

Included in the following conference series:

Abstract

We study the Multi-Power variant of the RSA cryptosystem where the modulus is of the form \(N=p^rq^s\) with \(\gcd (r,s)=1\). We present a method to solve the linear equation \(a_1x_1+a_2x_2\equiv 0\pmod {p^uq^v}\) where \(u<r\), \(v<s\), and \(a_1\), \(a_2\) are two integers satisfying \(\gcd (a_1a_2,N)=1\). We apply the new method to the cryptanalysis of two instances of the Multi-Power RSA. We define a generalization of the CRT-RSA variant of the standard RSA to the Multi-Power RSA, and apply the new method to study its security. The new method is based on Coppersmith’s method and lattice reduction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46(2), 203–213 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coron, J.S., Zeitoun, R.: Improved factorization of \(N=p^rq^s\), Cryptology ePrint Archive, Report 2016/551 (2016). https://ia.cr/2016/551

  4. The EPOC and the ESIGN Algorithms. IEEE P1363: Protocols from Other Families of Public-Key Algorithms (1998)

    Google Scholar 

  5. Hinek, M.: Cryptanalysis of RSA and Its Variants. Cryptography and Network Security Series, Chapman & Hall/CRC, Boca Raton (2009)

    Book  MATH  Google Scholar 

  6. Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

    Chapter  Google Scholar 

  7. Lenstra, H.W., Jr.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lim, S., Kim, S., Yie, I., Lee, H.: A generalized Takagi-cryptosystem with a modulus of the form \(p^r\)\(q^s\). In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 283–294. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44495-5_25

    Chapter  Google Scholar 

  10. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 189–213. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_9

    Chapter  Google Scholar 

  11. Lu, Y., Peng, L., Sarkar, S.: Cryptanalysis of an RSA variant with moduli \(N=p^rq^l\). J. Math. Cryptol. 11(2), 117–130 (2017)

    Google Scholar 

  12. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis, University of Paderborn (2003). http://www.cits.rub.de/imperia/md/content/may/paper/bp.ps

  13. Schmidt-Samoa, K.: A new Rabin-type trapdoor permutation equivalent to factoring. Electron. Not. Theor. Comput. Sci. 157(3), 79–94 (2006). https://eprint.iacr.org/2005/278.pdf

  14. May, A.: Secret exponent attacks on RSA-type schemes with moduli N=prq. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_16

    Chapter  Google Scholar 

  15. Nitaj, A., Susilo, W., Tonien, J.: A generalized attack on the multi-prime power RSA. In: Batina, L., Daemen, J. (eds.) AFRICACRYPT 2022. LNCS, vol. 13503, pp. 537–549. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17433-9_23

    Chapter  Google Scholar 

  16. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054135

    Chapter  Google Scholar 

  17. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electron. Lett. 18(21), 905–907 (1982)

    Article  Google Scholar 

  18. Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055738

    Chapter  Google Scholar 

  20. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36, 553–558 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Nitaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alquié, D., Chassé, G., Nitaj, A. (2022). Cryptanalysis of the Multi-Power RSA Cryptosystem Variant. In: Beresford, A.R., Patra, A., Bellini, E. (eds) Cryptology and Network Security. CANS 2022. Lecture Notes in Computer Science, vol 13641. Springer, Cham. https://doi.org/10.1007/978-3-031-20974-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20974-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20973-4

  • Online ISBN: 978-3-031-20974-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics