Skip to main content

Charge Sharing and Cross Talk Effects in High-Z and Wide-Bandgap Compound Semiconductor Pixel Detectors

  • Chapter
  • First Online:
High-Z Materials for X-ray Detection

Abstract

Intense research activities have been made in the development of high-Z and wide-bandgap compound semiconductor pixel detectors for the next generation X-ray and gamma ray spectroscopic imagers. Cadmium telluride (CdTe) and cadmium–zinc–telluride (CdZnTe or CZT) pixel detectors have shown impressive performance in X-ray and gamma ray detection from energies of few keV up to 1 MeV. Charge sharing and cross-talk phenomena represent the typical drawbacks in sub-millimeter pixel detectors, with severe distortions in both energy and spatial resolution. In this chapter, we review the effects of these phenomena on the response of CZT/CdTe pixel detectors, with particular emphasis on the current state of the art of the discrimination/correction techniques. The results from original energy-recovery procedures of multiple charge sharing events, recently developed by our group, are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barber, W. C., Wessel, J. C., Nygard, E., & Iwanczyk, J. S. (2015). Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications. Nuclear Instruments and Methods A, 784, 531–537.

    Article  Google Scholar 

  2. Del Sordo, S., Strazzeri, M., Agnetta, G., Biondo, B., Celi, F., Giarrusso, S., Mangano, A., Russo, F., Caroli, E., Donati, A., et al. (2004). Spectroscopic performances of 16 × 16 pixel CZT imaging hard-X-ray detectors. Nuovo Cimento B, 119, 257–270.

    Google Scholar 

  3. Iwanczyk, J., Nygard, E., Meirav, O., Arenson, J., Barber, W. C., Hartsough, N. E., Malakhov, N., & Wessel, J. C. (2009). Photon counting energy dispersive detector arrays for X-ray imaging. IEEE Transactions on Nuclear Science, 56, 535–542.

    Article  Google Scholar 

  4. Seller, P., Bell, S., Cernik, R. J., Christodoulou, C., Egan, C. K., Gaskin, J. A., Jacques, S., Pani, S., Ramsey, B. D., Reid, C., et al. (2011). Pixellated Cd(Zn)Te high-energy X-ray instrument. Journal of Instrumentation, 6, C12009.

    Article  Google Scholar 

  5. Szeles, C., Soldner, S. A., Vydrin, S., Graves, J., & Bale, D. S. (2008). CdZnTe semiconductor detectors for spectroscopic X-ray imaging. IEEE Transactions on Nuclear Science, 55, 572–582.

    Article  Google Scholar 

  6. Abbene, L., Gerardi, G., & Principato, F. (2015). Digital performance improvements of a CdTe pixel detector for high flux energy-resolved X-ray imaging. Nuclear Instruments and Methods A, 777, 54–62.

    Article  Google Scholar 

  7. Iniewski, K. (2014). CZT detector technology for medical imaging. Journal of Instrumentation, 9, C11001.

    Article  Google Scholar 

  8. Nguyen, J., Rodesch, P. A., Richtsmeier, D., Iniewski, K., & Bazalova-Carter, M. (2021). Optimization of a CZT photon counting detector for contaminant detection. Journal of Instrumentation, 16, P11015.

    Article  Google Scholar 

  9. Richtsmeier, D., Guliyev, E., Iniewski, K., & Bazalova-Carter, M. (2021). Contaminant detection in non-destructive testing using a CZT photon-counting detector. Journal of Instrumentation, 16, P01011.

    Article  Google Scholar 

  10. Del Sordo, S., Abbene, L., Caroli, E., Mancini, A. M., Zappettini, A., & Ubertini, P. (2009). Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 9, 3491–3526.

    Article  Google Scholar 

  11. Owens, A. (2006). Semiconductor materials and radiation detection. Journal of Synchrotron Radiation, 13, 143–150.

    Article  Google Scholar 

  12. Sammartini, M., Gandola, M., Mele, F., Garavelli, B., Macera, D., Pozzi, P., & Bertuccio, G. (2021). X–γ -ray spectroscopy with a CdTe pixel detector and SIRIO preamplifier at deep sub microsecond signal-processing time. IEEE Transactions on Nuclear Science, 68, 70–75.

    Article  Google Scholar 

  13. Sammartini, M., Gandola, M., Mele, F., Garavelli, B., Macera, D., Pozzi, P., & Bertuccio, G. (2018). A CdTe pixel detector–CMOS preamplifier for room temperature high sensitivity and energy resolution X and γ ray spectroscopic imaging. Nuclear Instruments and Methods A, 910, 168–173.

    Article  Google Scholar 

  14. Wilson, M. D., Bell, S. J., Cernik, R. J., Christodoulou, C., Egan, C. K., O’Flynn, D., Jacques, S., et al. (2013). Multiple module pixellated CdTe spectroscopic X-ray detector. IEEE Transactions on Nuclear Science, 60, 1197–1200.

    Article  Google Scholar 

  15. Meuris, A., Limousin, O., Lugiez, F., Gevin, O., Pinsard, F., Le Mer, I., Delagnes, E., Vassal, M. C., Soufflet, F., & Bocage, R. (2008). Caliste 64, an innovative CdTe hard X-ray micro-camera. IEEE Transactions on Nuclear Science, 55, 778–784.

    Article  Google Scholar 

  16. Abbene, L., Gerardi, G., Turturici, A. A., Del Sordo, S., & Principato, F. (2013). Experimental results from Al/p-CdTe/PtX-ray detectors. Nuclear Instruments and Methods A, 730, 135–140.

    Article  Google Scholar 

  17. Principato, F., Turturici, A. A., Gallo, M., & Abbene, L. (2013). Polarization phenomena in Al/p-CdTe/Pt X-ray detectors. Nuclear Instruments and Methods A, 730, 141–145.

    Article  Google Scholar 

  18. Principato, F., Gerardi, G., & Abbene, L. (2012). Time-dependent current-voltage characteristics of Al/p-CdTe/Pt x-ray detectors. Journal of Applied Physics, 112(9), 094506.

    Article  Google Scholar 

  19. Farella, I., Montagna, G., Mancini, A. M., & Cola, A. (2009). Study on instability phenomena in CdTe diode-like detectors. IEEE Transactions on Nuclear Science, 56, 1736–1742.

    Article  Google Scholar 

  20. Abbene, L., et al. (2018). Dual-polarity pulse processing and analysis for charge-loss correction in cadmium–zinc–telluride pixel detectors. Journal of Synchrotron Radiation, 25, 1078–1092.

    Article  Google Scholar 

  21. Buttacavoli, A., et al. (2020). Room-temperature performance of 3 mm-thick cadmium zinc telluride pixel detectors with sub-millimetre pixelization. Journal of Synchrotron Radiation, 27, 1180–1189.

    Article  Google Scholar 

  22. Bolotnikov, A. E., Camarda, G. C., Wright, G. W., & James, R. B. (2005). Factors limiting the performance of CdZnTe detectors. IEEE Transactions on Nuclear Science, 52, 589–598.

    Article  Google Scholar 

  23. Guerra, P., Santos, A., & Darambara, D. (2008). Development of a simplified simulation model for performance characterization of a pixellated CdZnTe multimodality imaging system. Physics in Medicine and Biology, 52, 589–598.

    Google Scholar 

  24. Koenig, T., et al. (2013). Charge summing in spectroscopic X-ray detectors with high-Z sensors. IEEE Transactions on Nuclear Science, 60, 4713–4718.

    Article  Google Scholar 

  25. Johns, P. M., & Nino, G. C. (2019). Room temperature semiconductor detectors for nuclear security. Journal of Applied Physics, 126, 040902.

    Article  Google Scholar 

  26. Abbene, L., et al. (2020). Recent advances in the development of high-resolution 3D cadmium–zinc–telluride drift strip detectors. Journal of Synchrotron Radiation, 27, 1564–1576.

    Article  Google Scholar 

  27. Abbene, L., et al. (2022). Potentialities of high-resolution 3-D CZT drift strip detectors for prompt gamma-ray measurements in BNCT. Sensors, 22(4), 1502.

    Article  Google Scholar 

  28. Howalt, O. S., et al. (2019). Evaluation of a Compton camera concept using the 3D CdZnTe drift strip detectors. Journal of Instrumentation, 14, C01020.

    Article  Google Scholar 

  29. Butler, J. F., et al. (1992). Cd1-xZnxTe gamma ray detectors. IEEE Transactions on Nuclear Science, 39, 605–609.

    Article  Google Scholar 

  30. Abbene, L., et al. (2020). Room-temperature X-ray response of cadmium-zinc-telluride pixel detectors grown by the vertical Bridgman technique. Journal of Synchrotron Radiation, 27, 319–328.

    Article  Google Scholar 

  31. Zappettini, A., et al. (2011). Growth and characterization of CZT crystals by the vertical bridgman method for X-ray detector applications. IEEE Transactions on Nuclear Science, 58(5), 2352–2356.

    Article  Google Scholar 

  32. Auricchio, N., Marchini, L., Caroli, E., Zappettini, A., Abbene, L., & Honkimaki, V. (2011). Charge transport properties in CdZnTe detectors grown by the vertical Bridgman technique. Journal of Applied Physics, 110, 124502.

    Article  Google Scholar 

  33. Abbene, L., et al. (2017). Development of new CdZnTe detectors for room-temperature high-flux radiation measurements. Journal of Synchrotron Radiation, 24, 429–438.

    Article  Google Scholar 

  34. Iniewski, K. (2016). CZT sensors for computed tomography: From crystal growth to image quality. Journal of Instrumentation, 11, C12034.

    Article  Google Scholar 

  35. Chen, H., et al. (2008). Characterization of large cadmium zinc telluride crystals grown by traveling heater method. Journal of Applied Physics, 103, 014903.

    Article  Google Scholar 

  36. Chen, H., et al. (2007). Characterization of traveling heater method (THM) grown Cd0.9Zn0.1Te crystals. IEEE Transactions on Nuclear Science, 54(4), 811–816.

    Article  Google Scholar 

  37. Abbene, L., et al. (2016). X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects. Nuclear Instruments and Methods A, 835, 1–12.

    Article  Google Scholar 

  38. Wang, X., et al. (2013). Further process of polarization within a pixellated CdZnTe detector under intense x-ray irradiation. Nuclear Instruments and Methods A, 700, 75–80.

    Article  Google Scholar 

  39. Sellin, P. J., et al. (2010). Electric field distributions in CdZnTe due to reduced temperature and x-ray irradiation. Applied Physics Letters A, 96, 133509.

    Article  Google Scholar 

  40. Bale, D. S., & Szeles, C. (2008). Nature of polarization in wide-bandgap semiconductor detectors under high-flux irradiation: Application to semi-insulating Cd1−xZnxTe. Physical Review B, 77, 035205.

    Article  Google Scholar 

  41. Thomas, B. C., et al. (2017). Characterisation of Redlen high-flux CdZnTe. Journal of Instrumentation, 12, C12045.

    Article  Google Scholar 

  42. Veale, M. C., et al. (2020). Characterization of the uniformity of high-flux CdZnTe material. Sensors, 20(10), 2747.

    Article  Google Scholar 

  43. Koch-Mehrin, K. A. L., et al. (2021). Charge sharing and charge loss in high-flux capable pixelated CdZnTe detectors. Sensors, 21, 3260.

    Article  Google Scholar 

  44. Buttacavoli, A., et al. (2022). Incomplete charge collection at inter-pixel gap in low-and high-flux cadmium zinc telluride pixel detectors. Sensors, 22(4), 1441.

    Article  Google Scholar 

  45. Kim, J. K., et al. (2011). Charge sharing in common-grid pixelated CdZnTe detectors. Nuclear Instruments and Methods A, 654, 233–243.

    Article  Google Scholar 

  46. Buttacavoli, A., et al. (2021). Energy recovery of multiple charge sharing events in room temperature semiconductor pixel detectors. Sensors, 21, 3669.

    Article  Google Scholar 

  47. Buttacavoli, A., et al. (2022). Ballistic deficit pulse processing in cadmium–zinc–telluride pixel detectors for high-flux X-ray measurements. Journal of Synchrotron Radiation, 22, 3409.

    Google Scholar 

  48. Lai, X., et al. (2020). Modeling photon counting detector anode street impact on detector energy response. IEEE Transactions on Radiation and Plasma Medical Sciences, 5, 476. https://doi.org/10.1109/TRPMS.2020.3013245

    Article  Google Scholar 

  49. Bugby, S. L., Koch-Mehrin, K. A. L., Veale, M. C., Wilson, M. D., & Lees, J. E. (2019). Energy-loss correction in charge sharing events for improved performance of pixellated compound semiconductors. Nuclear Instruments and Methods A, 940, 142–151.

    Article  Google Scholar 

  50. Abbene, L., Gerardi, G., Raso, G., Basile, S., Brai, M., & Principato, F. (2013). Energy resolution and throughput of a new real time digital pulse processing system for x-ray and gamma ray semiconductor detectors. Journal of Instrumentation, 8, P07019.

    Article  Google Scholar 

  51. Gerardi, G., & Abbene, L. (2014). A digital approach for real time high-rate high-resolution radiation measurements. Nuclear Instruments and Methods A, 768, 46–54.

    Article  Google Scholar 

  52. Bettelli, M., et al. (2020). A first principle method to simulate the spectral response of CdZnTe-based X- and gamma-ray detectors. Nuclear Instruments and Methods A, 960, 163663.

    Article  Google Scholar 

  53. Koch-Mehrin, K. A. L., et al. (2020). A spectroscopic Monte-Carlo model to simulate the response of pixelated CdTe based detectors. Nuclear Instruments and Methods A, 976, 164241.

    Article  Google Scholar 

  54. Ballabriga, R., et al. (2020). Photon counting detectors for X-ray imaging with emphasis on CT. IEEE Transactions on Radiation and Plasma Medical Sciences, 5, 422. https://doi.org/10.1109/TRPMS.2020.3002949

    Article  Google Scholar 

  55. Abbene, L., et al. (2018). Digital fast pulse shape and height analysis on cadmium–zinc–telluride arrays for high-flux energy-resolved X-ray imaging. Journal of Synchrotron Radiation, 25, 257–271.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Italian Ministry for University and Research (MUR), under AVATAR X project No. POC01_00111 and by the European Union (EU) under the project – FESR o FSE, PON Ricerca e Innovazione 2014–2020 – DM 1062/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Abbene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buttacavoli, A., Principato, F., Gerardi, G., Bettelli, M., Veale, M.C., Abbene, L. (2023). Charge Sharing and Cross Talk Effects in High-Z and Wide-Bandgap Compound Semiconductor Pixel Detectors. In: Abbene, L., Iniewski, K.(. (eds) High-Z Materials for X-ray Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-20955-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20955-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20954-3

  • Online ISBN: 978-3-031-20955-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics