Skip to main content

Is IEEG-Based Cognitive Neuroscience Research Clinically Relevant? Examination of Three “Neuromemes”

  • 680 Accesses

Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)

Abstract

Much progress has been made in the field of cognitive neuroscience thanks to intracerebral EEG (iEEG) research, largely due to the possibility of directly recording brain activity with unsurpassed spatial and temporal precision while patients perform cognitive tasks. However, do these patients gain anything from the time and effort they devote to this endeavour? In this chapter, we focus on three neuromemes, the “eloquent cortex”, “localisationism” and the “nociferous cortex” to provide possible answers to this question. We discuss the value of these neuromemes and show that clinical care of epilepsy and iEEG-based cognitive neuroscience are consubstantial in the sense that iEEG during epilepsy assessment provides an understanding of physiological processes of the healthy brain; but also, that cognitive iEEG research in epileptic patients has a direct impact on semiology and curative neurosurgery. Last, we highlight how recent cognitive iEEG research provides insights into interictal complaints and could improve identification of the epileptogenic zone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Quiroga RQ, Reddy L, Kreiman G et al (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107. https://doi.org/10.1038/nature03687

    Article  Google Scholar 

  2. Bausch M, Niediek J, Reber TP et al (2021) Concept neurons in the human medial temporal lobe flexibly represent abstract relations between concepts. Nat Commun 12:1–12. https://doi.org/10.1038/s41467-021-26327-3

    Article  Google Scholar 

  3. Reddy L, Thorpe SJ (2014) Concept cells through associative learning of high-level representations. Neuron 84:248–251. https://doi.org/10.1016/j.neuron.2014.10.004

    Article  Google Scholar 

  4. Bartolomei F, Lagarde S, Médina Villalon S et al (2016) The Proust phenomenon: odor-evoked autobiographical memories triggered by direct amygdala stimulation in human. Cortex 90:173–175. https://doi.org/10.1016/j.cortex.2016.12.005

    Article  Google Scholar 

  5. Jacobs J, Kahana MJ (2010) Direct brain recordings fuel advances in cognitive electrophysiology. Trends Cogn Sci 14:162–171. https://doi.org/10.1016/j.tics.2010.01.005

    Article  Google Scholar 

  6. Mukamel R, Fried I (2012) Human intracranial recordings and cognitive neuroscience. Annu Rev Psychol 63:511–537. https://doi.org/10.1146/annurev-psych-120709-145401

    Article  Google Scholar 

  7. Parvizi J, Kastner S (2018) Promises and limitations of human intracranial electroencephalography. Nat Neurosci 21:474–483. https://doi.org/10.1038/s41593-018-0108-2

    Article  Google Scholar 

  8. Jerbi K, Combrisson E, Dalal S et al (2013) Decoding cognitive states and motor intentions from intracranial EEG: how promising is high-frequency brain activity for brain-machine interfaces? Epilepsy Behav 28:283–302. https://doi.org/10.1016/j.yebeh.2013.03.012

    Article  Google Scholar 

  9. Fried I (1993) The myth of eloquent cortex, or what is non-eloquent cortex? J Neurosurg 78:1009–1010. https://doi.org/10.3171/2014.12.JNS142826

    Article  Google Scholar 

  10. Duffau H (2021) The death of localizationism: The concepts of functional connectome and neuroplasticity deciphered by awake mapping, and their implications for best care of brain-damaged patients. Rev Neurol (Paris) 177:1093–1103. https://doi.org/10.1016/j.neurol.2021.07.016

    Article  Google Scholar 

  11. Kleen JK, Kirsch HE (2017) The nociferous influence of interictal discharges on memory. Brain 140:2072. https://doi.org/10.1093/brain/awx143

    Article  Google Scholar 

  12. Blackmore S (2000) The meme machine. Oxford Paperbacks

    Google Scholar 

  13. Dawkins R (1976) Memes: the new replicators. In: Press OU (ed) The Selfish Gene. Oxford, pp 1–13

    Google Scholar 

  14. Baxendale S (2021) Epilepsy: lessons for clinicians from popular memes on social media. Epilepsy Behav 118:107899. https://doi.org/10.1016/j.yebeh.2021.107899

    Article  Google Scholar 

  15. Devinsky O (2005) The myth of silent cortex and the morbidity of epileptogenic tissue: Implications for temporal lobectomy. Epilepsy Behav 7:383–389. https://doi.org/10.1016/j.yebeh.2005.07.020

    Article  Google Scholar 

  16. Dekker S, Lee NC, Howard-Jones P, Jolles J (2012) Neuromyths in education: prevalence and predictors of misconceptions among teachers. Front Psychol 3:1–8. https://doi.org/10.3389/fpsyg.2012.00429

    Article  Google Scholar 

  17. Lilienfeld SO, Lynn SJ, Ruscio J, Beyerstein BL (2011) 50 great myths of popular psychology: shattering widespread misconceptions about human behavior. John Wiley & Sons

    Google Scholar 

  18. Curot J, Busigny T, Valton L et al (2017) Memory scrutinized through electrical brain stimulation: a review of 80 years of experiential phenomena. Neurosci Biobehav Rev 78:161–177

    Article  Google Scholar 

  19. Kahn E, Lane M, Sagher O (2017) Eloquent: history of a word’s adoption into the neurosurgical lexicon. J Neurosurg 127:1461–1466. https://doi.org/10.3171/2017.3.JNS17659

    Article  Google Scholar 

  20. Drake CG (1979) Cerebral arteriovenous malformations: considerations for and experience with surgical treatment in 166 cases. Clin Neurosurg 26:145–208. https://doi.org/10.1093/neurosurgery/26.cn_suppl_1.145

    Article  Google Scholar 

  21. Rosenow F, Luders HO (2001) Presurgical evaluation of epilepsy. Brain 1683–1700. https://doi.org/10.4103/1817-1745.40593

  22. Schevon CA, Carlson C, Zaroff CM et al (2007) Pediatric language mapping: sensitivity of neurostimulation and Wada testing in epilepsy surgery. Epilepsia 48:539–545. https://doi.org/10.1111/j.1528-1167.2006.00962.x

    Article  Google Scholar 

  23. van’t Klooster MA, Van Klink NEC, Leijten FSS et al (2015) Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology 85:120–128. https://doi.org/10.1212/WNL.0000000000001727

  24. Penfield W (1959) The interpretive cortex: the stream of consciousness in the human brain can be electrically reactivated. Science 129:1719–1725

    Article  Google Scholar 

  25. Penfield W, Perot P (1963) The brain’s record of auditory and visual experience: a final summary and discussion. Brain 86:595–696

    Article  Google Scholar 

  26. Penfield W (1958) Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proc Natl Acad Sci U S A 44:51–66. https://doi.org/10.1073/pnas.44.2.51

    Article  Google Scholar 

  27. Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E (1994) Anatomical origin of deja vu and vivid “memories” in human temporal lobe epilepsy. Brain 117(Pt 1):71–90. https://doi.org/10.1093/brain/117.1.71

  28. Barbeau E, Wendling F, Régis J et al (2005) Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia 43:1329–1337. https://doi.org/10.1016/j.neuropsychologia.2004.11.025

    Article  Google Scholar 

  29. Sporns O (2014) Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 17:652–660. https://doi.org/10.1038/nn.3690

    Article  Google Scholar 

  30. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239. https://doi.org/10.1038/35067550

    Article  Google Scholar 

  31. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14:277–290. https://doi.org/10.1016/j.tics.2010.04.004

    Article  Google Scholar 

  32. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown & Co., Oxford, England

    Google Scholar 

  33. Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172. https://doi.org/10.1038/nrn3901

    Article  Google Scholar 

  34. Koehler PJ (1996) Brown-Séquard and cerebral localization as illustrated by his ideas on aphasia. J Hist Neurosci 5:26–33. https://doi.org/10.1080/09647049609525648

    Article  Google Scholar 

  35. Luauté JP, Luauté J (2005) Von Monakow’s diaschisis. History and future of a discovery. Ann Med Psychol (Paris) 163:329–333. https://doi.org/10.1016/j.amp.2005.03.031

    Article  Google Scholar 

  36. Pearce JM (1994) Von Monakow and diaschisis. J Neurol Neurosurg Psychiatry 57:197. https://doi.org/10.1136/jnnp.57.2.197

    Article  Google Scholar 

  37. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:0245–0251. https://doi.org/10.1371/journal.pcbi.0010042

    Article  Google Scholar 

  38. Hermann B, Seidenberg M (1995) Executive system dysfunction in temporal lobe epilepsy: effects of nociferous cortex versus hippocampal pathology. J Clin Exp Neuropsychol 17:809–819. https://doi.org/10.1080/01688639508402430

    Article  Google Scholar 

  39. Coan AC, Campos BM, Yasuda CL et al (2014) Frequent seizures are associated with a network of gray matter atrophy in temporal lobe epilepsy with or without hippocampal sclerosis. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0085843

  40. Ung H, Cazares C, Nanivadekar A et al (2017) Interictal epileptiform activity outside the seizure onset zone impacts cognition. Brain 140:2157–2168. https://doi.org/10.1093/brain/awx143

    Article  Google Scholar 

  41. Henin S, Shankar A, Borges H et al (2021) Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain 144:1590–1602. https://doi.org/10.1093/brain/awab044

    Article  Google Scholar 

  42. Gelinas JN, Khodagholy D, Thesen T et al (2016) Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med 22:641–648. https://doi.org/10.1038/nm.4084

    Article  Google Scholar 

  43. Dahal P, Ghani N, Flinker A et al (2019) Interictal epileptiform discharges shape large-scale intercortical communication. Brain 142:3502–3513. https://doi.org/10.1093/brain/awz269

    Article  Google Scholar 

  44. Gilliam F (2014) “Connectionology” provides further evidence for nociferous epileptic cortex. Epilepsy Curr 14:183–185. https://doi.org/10.5698/1535-7597-14.4.183

    Article  Google Scholar 

  45. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483. https://doi.org/10.3171/JNS/2008/108/01/0186

  46. Bédos Ulvin L, Jonas J, Brissart H et al (2017) Intracerebral stimulation of left and right ventral temporal cortex during object naming. Brain Lang 175:71–76. https://doi.org/10.1016/j.bandl.2017.09.003

    Article  Google Scholar 

  47. Ojemann G, a. (2003) The neurobiology of language and verbal memory: observations from awake neurosurgery. Int J Psychophysiol 48:141–146. https://doi.org/10.1016/S0167-8760(03)00051-5

    Article  Google Scholar 

  48. Salanova V, Witt T, Worth R et al (2015) Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84:1017–1025. https://doi.org/10.1212/wnl.0000000000001334

    Article  Google Scholar 

  49. Young JS, Lee AT, Chang EF (2021) A review of cortical and subcortical stimulation mapping for language. Neurosurgery 89:331–342. https://doi.org/10.1093/neuros/nyaa436

    Article  Google Scholar 

  50. Signorelli F, Guyotat J, Mottolese C et al (2004) Intraoperative electrical stimulation mapping as an aid for surgery of intracranial lesions involving motor areas in children. Child’s Nerv Syst 20:420–426. https://doi.org/10.1007/s00381-004-0961-z

    Article  Google Scholar 

  51. Fried I, Katz A, McCarty G et al (1991) Functional organization of human supplementary studied by electrical stimulation motor cortex. J Neurosci 11:3656–3666

    Article  Google Scholar 

  52. Usui N, Terada K, Baba K et al (2008) Extraoperative functional mapping of motor areas in epileptic patients by high-frequency cortical stimulation. J Neurosurg 109:605–614. https://doi.org/10.3171/JNS/2008/109/10/0605

    Article  Google Scholar 

  53. Jonas J, Frismand S, Vignal JP et al (2014) Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum Brain Mapp 35:3360–3371. https://doi.org/10.1002/hbm.22407

    Article  Google Scholar 

  54. Duffau H (2010) Awake surgery for nonlanguage mapping. Neurosurgery 66:523–528. https://doi.org/10.1227/01.NEU.0000364996.97762.73

    Article  Google Scholar 

  55. Mandonnet E, Winkler P, a, Duffau H, (2010) Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien) 152:185–193. https://doi.org/10.1007/s00701-009-0469-0

    Article  Google Scholar 

  56. Selimbeyoglu A, Parvizi J (2010) Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci 4:46. https://doi.org/10.3389/fnhum.2010.00046

    Article  Google Scholar 

  57. Trébuchon A, Chauvel P (2016) Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography. J Clin Neurophysiol 33:511–521. https://doi.org/10.1097/WNP.0000000000000313

    Article  Google Scholar 

  58. Jonas J (2018) Prédiction du devenir fonctionnel postopératoire en chirurgie de l’épilepsie grâce aux stimulations électriques corticales. Neuropsychol des épilepsies l’adulte Approch Clin Prat 109

    Google Scholar 

  59. Foster BL, Parvizi J (2017) Direct cortical stimulation of human posteromedial cortex. 1–7. https://doi.org/10.1212/WNL.0000000000003607

  60. Aron O, Jonas J, Colnat-Coulbois S, Maillard L (2021) Language mapping using stereo electroencephalography: a review and expert opinion. Front Hum Neurosci 15:1–12. https://doi.org/10.3389/fnhum.2021.619521

    Article  Google Scholar 

  61. Nandakumar N, Manzoor K, Agarwal S et al (2021) Automated eloquent cortex localization in brain tumor patients using multi-task graph neural networks. Med Image Anal 74:102203. https://doi.org/10.1016/j.media.2021.102203

    Article  Google Scholar 

  62. Kahane P, Tassi L, Hoffmann SFD et al (1993) Manifestations électrocliniques induites par la stimulation électrique intracérébrale par “chocs” dans les épilepsies temporales. Neurophysiol Clin 22:305–326

    Article  Google Scholar 

  63. Roux F-E, Durand JB, Djidjeli I et al (2016) Variability of intraoperative electrostimulation parameters in conscious individuals: language cortex. 126:1641–1652. https://doi.org/10.3171/2016.4.JNS152434

    Article  Google Scholar 

  64. Mohan UR, Watrous AJ, Miller JF et al (2020) The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stimul 13:1183–1195. https://doi.org/10.1016/j.brs.2020.05.009

    Article  Google Scholar 

  65. Zangaladze A, Sharan A, Evans J et al (2008) The effectiveness of low-frequency stimulation for mapping cortical function. Epilepsia 49:481–487. https://doi.org/10.1111/j.1528-1167.2007.01307.x

    Article  Google Scholar 

  66. Paulk AC, Zelmann R, Crocker B et al (2022) Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters. Brain Stimul 15:491–508. https://doi.org/10.1016/j.brs.2022.02.017

    Article  Google Scholar 

  67. Marti AS, Mirsattari SM, Steven DA et al (2022) Extraoperative electrical stimulation mapping in epilepsy presurgical evaluation: a proposal and review of the literature. Clin Neurol Neurosurg 214:107170. https://doi.org/10.1016/j.clineuro.2022.107170

    Article  Google Scholar 

  68. Borchers S, Himmelbach M, Logothetis N, Karnath HO (2012) Direct electrical stimulation of human cortex—the gold standard for mapping brain functions? Nat Rev Neurosci 13:63–70. https://doi.org/10.1038/nrn3140

    Article  Google Scholar 

  69. Halgren E, Wilson CL (1985) Recall deficits produced by afterdischarges in the human hippocampal formation and amygdala. Electroencephalogr Clin Neurophysiol 61:375–380

    Article  Google Scholar 

  70. Suthana N, Haneef Z, Stern J et al (2012) Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 366:502–510. https://doi.org/10.1056/NEJMoa1107212

    Article  Google Scholar 

  71. Coleshill SG, Binnie DC, Morris RG et al (2004) Material-specific recognition memory deficits elicited by unilateral hippocampal electrical stimulation. J Neurosci 24:1612–1616. https://doi.org/10.1523/JNEUROSCI.4352-03.2004

    Article  Google Scholar 

  72. Kolarik BS, Baer T, Shahlaie K et al (2018) Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory. Hippocampus 28:31–41. https://doi.org/10.1002/hipo.22801

    Article  Google Scholar 

  73. Yrondi A, Valton L, Bouilleret V et al (2020) Post-traumatic stress disorder with flashbacks of an old childhood memory triggered by right temporal lobe epilepsy surgery in adulthood. Front Psychiatry 11:1–5. https://doi.org/10.3389/fpsyt.2020.00351

    Article  Google Scholar 

  74. Cleary RA, Baxendale SA, Thompson PJ, Foong J (2013) Predicting and preventing psychopathology following temporal lobe epilepsy surgery. Epilepsy Behav 26:322–334. https://doi.org/10.1016/j.yebeh.2012.09.038

    Article  Google Scholar 

  75. Unterberger I, Trinka E, Ransmayr G et al (2021) Epileptic aphasia—a critical appraisal. Epilepsy Behav 121:108064. https://doi.org/10.1016/j.yebeh.2021.108064

    Article  Google Scholar 

  76. Morris RG, Coleshill SG, Lacruz ME et al (2012) Hippocampal electrical stimulation and localisation of long-term episodic memory. Epilepsy Mem 358

    Google Scholar 

  77. Curot J, Denuelle M, Busigny T et al (2014) Bilateral Wada test: amobarbital or propofol? Seizure 23:122–128. https://doi.org/10.1016/j.seizure.2013.10.009

    Article  Google Scholar 

  78. Mesulam M (2009) Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron 62:1–3. https://doi.org/10.1016/j.neuron.2009.04.001

    Article  Google Scholar 

  79. Isnard J, Taussig D, Bartolomei F et al (2018) French guidelines on stereoelectroencephalography (SEEG). Neurophysiol Clin/Clin Neurophysiol 48:5–13. https://doi.org/10.1016/j.neucli.2017.11.005

    Article  Google Scholar 

  80. Bartolomei F, Lagarde S, Wendling F et al (2017) Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia 1–17. https://doi.org/10.1111/epi.13791

  81. Friederici AD, Gierhan SME (2013) The language network. Curr Opin Neurobiol 23:250–254. https://doi.org/10.1016/j.conb.2012.10.002

    Article  Google Scholar 

  82. Busch RM, Love TE, Jehi LE et al (2015) Effect of invasive EEG monitoring on cognitive outcome after left temporal lobe epilepsy surgery. Neurology 85:1475–1481. https://doi.org/10.1212/WNL.0000000000002066

    Article  Google Scholar 

  83. Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–522. https://doi.org/10.1016/j.neuron.2009.07.016

    Article  Google Scholar 

  84. Logothetis NK, Augath M, Murayama Y et al (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291. https://doi.org/10.1038/nn.2631

    Article  Google Scholar 

  85. Jacobs J, Lega B, Anderson C (2012) Explaining how brain stimulation can evoke memories. J Cogn Neurosci 553–563

    Google Scholar 

  86. Kim K, Schedlbauer A, Rollo M et al (2018) Network-based brain stimulation selectively impairs spatial retrieval. Brain Stimul 11:213–221. https://doi.org/10.1016/j.brs.2017.09.016

    Article  Google Scholar 

  87. Kim K, Ekstrom AD, Tandon N (2016) A network approach for modulating memory processes via direct and indirect brain stimulation: Toward a causal approach for the neural basis of memory. Neurobiol Learn Mem 134:162–177. https://doi.org/10.1016/j.nlm.2016.04.001

    Article  Google Scholar 

  88. Fernandez G, Tendolkar I (2006) The rhinal cortex: “gatekeeper” of the declarative memory system. Trends Cogn Sci 10:358–362. https://doi.org/10.1016/j.tics.2006.06.003

    Article  Google Scholar 

  89. van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17:683–696. https://doi.org/10.1016/j.tics.2013.09.012

    Article  Google Scholar 

  90. Grunwald T, Lehnertz K, Pezer N et al (1999) Prediction of postoperative seizure control by hippocampal event- related potentials. Epilepsia 40:303–306. https://doi.org/10.1111/j.1528-1157.1999.tb00708.x

    Article  Google Scholar 

  91. Elger CE, Grunwald T, Lehnertz K et al (1997) Human temporal lobe potentials in verbal learning and memory processes. Neuropsychologia 35:657–667. https://doi.org/10.1016/S0028-3932(96)00110-8

    Article  Google Scholar 

  92. Kambara T, Sood S, Alqatan Z et al (2018) Presurgical language mapping using event-related high-gamma activity: the Detroit procedure. Clin Neurophysiol 129:145–154. https://doi.org/10.1016/j.clinph.2017.10.018

    Article  Google Scholar 

  93. Jerbi K, Ossandón T, Hamamé CM et al (2009) Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp 30:1758–1771. https://doi.org/10.1002/hbm.20750

    Article  Google Scholar 

  94. Cuisenier P, Testud B, Minotti L et al (2021) Relationship between direct cortical stimulation and induced high-frequency activity for language mapping during SEEG recording. 134:1251–1261. https://doi.org/10.3171/2020.2.JNS192751

    Article  Google Scholar 

  95. Gastaut H, Broughton RJ (1972) Epileptic seizures; clinical and electrographic features, diagnosis and treatment. Thomas

    Google Scholar 

  96. Bancaud J, Talairach J (1965) La stéréo-électroencéphalographie dans l’épilepsie : informations neurophysiopathologiques apportées par l’investigation fonctionnelle stéreotaxique. Masson et Cie, Paris

    Google Scholar 

  97. McGonigal A, Bartolomei F, Chauvel P (2021) On seizure semiology. Epilepsia 62:2019–2035. https://doi.org/10.1111/epi.16994

    Article  Google Scholar 

  98. Ren L, Yu T, Wang D et al (2020) Subthalamic nucleus stimulation modulates motor epileptic activity in humans. Ann Neurol 88:283–296. https://doi.org/10.1002/ana.25776

    Article  Google Scholar 

  99. Filipescu C, Lagarde S, Lambert I et al (2019) The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia 60:e25–e30. https://doi.org/10.1111/epi.14677

    Article  Google Scholar 

  100. Bartolomei F, Wendling F, Vignal JP et al (2002) Neural networks underlying epileptic humming. Epilepsia 43:1001–1012. https://doi.org/10.1046/j.1528-1157.2002.48501.x

    Article  Google Scholar 

  101. Biraben A, Taussig D, Thomas P et al (2001) Fear as the main feature of epileptic seizures. J Neurol Neurosurg Psychiatry 70:186–191. https://doi.org/10.1136/jnnp.70.2.186

    Article  Google Scholar 

  102. Bartolomei F, Guye M, Wendling F et al (2003) Fear, anger and compulsive behavior during seizure: involvement of large scale fronto-temporal neural networks. Epileptic Disord 4:235–241

    Google Scholar 

  103. Chen S, Tan Z, Xia W et al (2021) Theta oscillations synchronize human medial prefrontal cortex and amygdala during fear learning. Sci Adv 7:1–14. https://doi.org/10.1126/sciadv.abf4198

    Article  Google Scholar 

  104. Matsumoto R, Nair DR, LaPresto E et al (2007) Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain 130:181–197. https://doi.org/10.1093/brain/awl257

    Article  Google Scholar 

  105. Trebaul L, Deman P, Tuyisenge V et al (2018) Probabilistic functional tractography of the human cortex revisited. Neuroimage 181:414–429. https://doi.org/10.1016/j.neuroimage.2018.07.039

    Article  Google Scholar 

  106. Axmacher N, Schmitz DP, Wagner T et al (2008) Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. J Neurosci 28:7304–7312. https://doi.org/10.1523/JNEUROSCI.1778-08.2008

    Article  Google Scholar 

  107. Kleen JK, Scott RC, Holmes GL et al (2013) Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81:18–24. https://doi.org/10.1212/wnl.0b013e318297ee50

    Article  Google Scholar 

  108. Curot J, Barbeau E, Despouy E, Denuelle M, Sol JC, Lotterie JA, Peyrache A (2021) Local neuronal excitation and global inhibition during epileptic fast ripples in humans. Brain 2022 awac319. https://doi.org/10.1093/brain/awac319

  109. Corcoran R, Thompson P (1993) Epilepsy and poor memory: Who complains and what do they mean? Br J Clin Psychol 32:199–208. https://doi.org/10.1111/j.2044-8260.1993.tb01044.x

    Article  Google Scholar 

  110. Lemesle B, Barbeau EJ, Milongo Rigal E et al (2022) Hidden objective memory deficits behind subjective memory complaints in patients with temporal lobe epilepsy. Neurology 98:E818–E828. https://doi.org/10.1212/WNL.0000000000013212

    Article  Google Scholar 

  111. Lambert I, Tramoni-negre E, Lagarde S et al (2021) Accelerated long-term forgetting in focal epilepsy: do interictal spikes during sleep matter? Epilepsia 1–7. https://doi.org/10.1111/epi.16823

  112. Horak PC, Meisenhelter S, Song Y et al (2017) Interictal epileptiform discharges impair word recall in multiple brain areas. Epilepsia 58:373–380. https://doi.org/10.1111/epi.13633

    Article  Google Scholar 

  113. Sánchez Fernández I, Loddenkemper T, Galanopoulou AS, Moshé SL (2015) Should epileptiform discharges be treated? Epilepsia 56:1492–1504. https://doi.org/10.1111/epi.13108

    Article  Google Scholar 

  114. Warren CP, Hu S, Stead M et al (2010) Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol 104:3530–3539. https://doi.org/10.1152/jn.00368.2010

    Article  Google Scholar 

  115. Burns SP, Santaniello S, Yaffe RB et al (2014) Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc Natl Acad Sci U S A 111:E5321–E5330. https://doi.org/10.1073/pnas.1401752111

    Article  Google Scholar 

  116. Brázdil M, Cimbálník J, Roman R et al (2015) Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus. BMC Neurosci 16:1–9. https://doi.org/10.1186/s12868-015-0184-0

    Article  Google Scholar 

  117. Pail M, Cimbálník J, Roman R et al (2020) High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-74306-3

    Article  Google Scholar 

  118. Saboo KV, Balzekas I, Kremen V et al (2021) Leveraging electrophysiologic correlates of word encoding to map seizure onset zone in focal epilepsy: task-dependent changes in epileptiform activity, spectral features, and functional connectivity. Epilepsia 62:2627–2639. https://doi.org/10.1111/epi.17067

    Article  Google Scholar 

  119. Young JJ, Rudebeck PH, Marcuse LV et al (2018) Theta band network supporting human episodic memory is not activated in the seizure onset zone. Neuroimage 183:565–573. https://doi.org/10.1016/j.neuroimage.2018.08.052

    Article  Google Scholar 

  120. Cimbalnik J, Brinkmann B, Kremen V et al (2018) Physiological and pathological high frequency oscillations in focal epilepsy. Ann Clin Transl Neurol 5:1062–1076. https://doi.org/10.1002/acn3.618

    Article  Google Scholar 

  121. Akkol S, Kucyi A, Hu W et al (2021) Intracranial electroencephalography reveals selective responses to cognitive stimuli in the periventricular heterotopias. J Neurosci 41:3870–3878. https://doi.org/10.1523/JNEUROSCI.2785-20.2021

    Article  Google Scholar 

  122. Bartolomei F, Barbeau E, Gavaret M et al (2004) Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology 63:858–864. https://doi.org/10.1212/01.WNL.0000137037.56916.3F

    Article  Google Scholar 

  123. Bartolomei F, Barbeau EJ, Nguyen T et al (2012) Rhinal-hippocampal interactions during déjà vu. Clin Neurophysiol 123:489–495. https://doi.org/10.1016/j.clinph.2011.08.012

    Article  Google Scholar 

  124. Curot J, Valton L, Denuelle M et al (2018) Déjà-rêvé: prior dreams induced by direct electrical brain stimulation. Brain Stimul 11:875–885. https://doi.org/10.1016/j.brs.2018.02.016

    Article  Google Scholar 

  125. Arthuis M, Valton L, Rgis J et al (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance corticalsubcortical synchronization. Brain 132:2091–2101. https://doi.org/10.1093/brain/awp086

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Curot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curot, J., Valton, L., Barbeau, E.J. (2023). Is IEEG-Based Cognitive Neuroscience Research Clinically Relevant? Examination of Three “Neuromemes”. In: Axmacher, N. (eds) Intracranial EEG. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-20910-9_11

Download citation

Publish with us

Policies and ethics