Skip to main content

How Can iEEG Be Used to Study Inter-Individual and Developmental Differences?

Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)

Abstract

Inter-individual differences, including but not limited to those that distinguish children from adolescents and younger from older adults, are a hallmark of human cognition. As described throughout this book, intracranial electroencephalography (iEEG) affords unprecedented access to the human brain, permitting insight into the neurophysiology of human cognition with high spatiotemporal and single-trial precision. However, iEEG is also limited due to brain coverage that is sparse within one patient and variable across patients. This limitation poses a fundamental challenge for the use of iEEG in controlled investigations of inter-individual differences. In this chapter, we address this challenge and describe best practices for studies that aim to elucidate inter-individual and developmental differences in the neurophysiological mechanisms of human cognition using iEEG. We first briefly discuss how iEEG data are typically handled by minimizing sources of inter-individual variability. We then present best practices for the use of iEEG in controlled investigations of inter-individual differences and describe recent studies that used iEEG to reveal signatures of memory which differ across patients. We propose that iEEG be considered a gold standard in studies of inter-individual and developmental differences in the neurophysiology of human cognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ball T, Kern M, Mutschler I et al (2009) Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage 46:708–716. https://doi.org/10.1016/j.neuroimage.2009.02.028

    Article  Google Scholar 

  2. Kanai R, Rees G (2011) The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci 12:231–242. https://doi.org/10.1038/nrn3000

    Article  Google Scholar 

  3. Dubois J, Adolphs R (2016) Building a science of individual differences from fMRI. Trends Cogn Sci 20:425–443. https://doi.org/10.1016/j.tics.2016.03.014

    Article  Google Scholar 

  4. Seghier ML, Price CJ (2018) Interpreting and utilising intersubject variability in brain function. Trends Cogn Sci xx:1–14. https://doi.org/10.1016/j.tics.2018.03.003

  5. Foulkes L, Blakemore SJ (2018) Studying individual differences in human adolescent brain development. Nat Neurosci 21:1–9. https://doi.org/10.1038/s41593-018-0078-4

    Article  Google Scholar 

  6. Semendeferi K, Teffer K, Buxhoeveden DP et al (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21:1485–1497. https://doi.org/10.1093/cercor/bhq191

    Article  Google Scholar 

  7. Semendeferi K, Armstrong E, Schleicher A et al (1998) Limbic frontal cortex in hominoids: a comparative study of area 13. Am J Phys Anthropol 106:129–155. https://doi.org/10.1002/(SICI)1096-8644(199806)106:2%3c129::AID-AJPA3%3e3.0.CO;2-L[pii]\r10.1002/(SICI)1096-8644(199806)106:2%3c129::AID-AJPA3%3e3.0.CO;2-L

    Google Scholar 

  8. Teffer K, Buxhoeveden DP, Stimpson CD et al (2013) Developmental changes in the spatial organization of neurons in the neocortex of humans and common chimpanzees. J Comp Neurol 521:4249–4259. https://doi.org/10.1002/cne.23412

    Article  Google Scholar 

  9. Semendeferi K, Armstrong E, Schleicher A et al (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Antropol 114:224–241. https://doi.org/10.1002/1096-8644(200103)114:3%3c224::AID-AJPA1022%3e3.0.CO;2-I

    Article  Google Scholar 

  10. Sydnor VJ, Larsen B, Bassett DS et al (2021) Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron. https://doi.org/10.1016/j.neuron.2021.06.016

    Article  Google Scholar 

  11. Johnson EL, Kam JWY, Tzovara A, Knight RT (2020) Insights into human cognition from intracranial EEG: a review of audition, memory, internal cognition, and causality. J Neural Eng 17:051001. https://doi.org/10.1088/1741-2552/abb7a5

    Article  Google Scholar 

  12. Parvizi J, Kastner S (2018) Human intracranial EEG: promises and limitations. Nat Neurosci. https://doi.org/10.1038/s41593-018-0108-2

    Article  Google Scholar 

  13. Ofen N, Tang L, Yu Q, Johnson EL (2019) Memory and the developing brain: from description to explanation with innovation in methods. Dev Cogn Neurosci 36:100613. https://doi.org/10.1016/j.dcn.2018.12.011

    Article  Google Scholar 

  14. Lachaux J-P, Axmacher N, Mormann F et al (2012) High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog Neurobiol 98:279–301. https://doi.org/10.1016/j.pneurobio.2012.06.008

    Article  Google Scholar 

  15. Braver TS, Cole MW, Yarkoni T (2010) Vive les differences! Individual variation in neural mechanisms of executive control. Curr Opin Neurobiol 20:242–250. https://doi.org/10.1016/j.conb.2010.03.002

    Article  Google Scholar 

  16. Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S (2015) Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85:11–26. https://doi.org/10.1016/j.neuron.2014.10.047

    Article  Google Scholar 

  17. Rosenberg MD, Casey BJ, Holmes AJ (2018) Prediction complements explanation in understanding the developing brain. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-02887-9

    Article  Google Scholar 

  18. Johnson EL, Knight RT (2015) Intracranial recordings and human memory. Curr Opin Neurobiol 31:18–25. https://doi.org/10.1016/j.conb.2014.07.021

    Article  Google Scholar 

  19. Chiong W, Leonard MK, Chang EF (2017) Neurosurgical patients as human research subjects: ethical considerations in intracranial electrophysiology research. Neurosurgery 0:1–9. https://doi.org/10.1093/neuros/nyx361

  20. Smith PL, Little DR (2018) Small is beautiful: in defense of the small-N design. Psychon Bull Rev 1–19. https://doi.org/10.3758/s13423-018-1451-8

  21. Marks VS, Saboo K V, Lech M et al (2021) Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation. Neuroimage 245. https://doi.org/10.1016/j.neuroimage.2021.118637

  22. Fiedler K, McCaughey L, Prager J (2021) Quo Vadis, methodology? The key role of manipulation checks for validity control and quality of science. Perspect Psychol Sci 16:816–826. https://doi.org/10.1177/1745691620970602

    Article  Google Scholar 

  23. Brzezicka A, Kamiński J, Reed C et al (2019) Working memory load related theta power decreases in dorsolateral prefrontal cortex predict individual differences in performance. J Cogn Neurosci 31:1290–1307. https://doi.org/10.1162/jocn

    Article  Google Scholar 

  24. Yin Q, Johnson EL, Tang L et al (2020) Direct brain recordings reveal occipital cortex involvement in memory development. Neuropsychologia 148:107625. https://doi.org/10.1016/j.neuropsychologia.2020.107625

    Article  Google Scholar 

  25. Johnson EL, Tang L, Yin Q, et al (2018) Direct brain recordings reveal prefrontal cortex dynamics of memory development. Sci Adv 4:eaat3702. https://doi.org/10.1126/sciadv.aat3702

  26. Sheehan TC, Sreekumar V, Inati SK, Zaghloul KA (2018) Signal complexity of human intracranial EEG tracks successful associative memory formation across individuals. J Neurosci 38:180240. https://doi.org/10.1101/180240

    Article  Google Scholar 

  27. Johnson EL, Yin Q, O’Hara NB et al (2022) Dissociable oscillatory theta signatures of memory formation in the developing brain. Curr Biol 32. https://doi.org/10.1016/j.cub.2022.01.053

  28. Nir Y, Fisch L, Mukamel R et al (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI Is related to interneuronal correlations. Curr Biol 17:1275–1285. https://doi.org/10.1016/j.cub.2007.06.066

    Article  Google Scholar 

  29. Ray S, Crone NE, Niebur E et al (2008) Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28:11526–11536. https://doi.org/10.1523/JNEUROSCI.2848-08.2008

    Article  Google Scholar 

  30. Rich EL, Wallis JD (2017) Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma. Nat Commun 8:1139. https://doi.org/10.1038/s41467-017-01253-5

    Article  Google Scholar 

  31. Leszczyński M, Barczak A, Kajikawa Y et al (2020) Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. Sci Adv 6:1–13. https://doi.org/10.1126/sciadv.abb0977

    Article  Google Scholar 

  32. Hanslmayr S, Staresina BP, Bowman H (2016) Oscillations and episodic memory: addressing the synchronization/desynchronization conundrum. Trends Neurosci 39:16–25. https://doi.org/10.1016/j.tins.2015.11.004

    Article  Google Scholar 

  33. Mostame P, Sadaghiani S (2020) Phase- and amplitude-coupling are tied by an intrinsic spatial organization but show divergent stimulus-related changes. Neuroimage 219:117051. https://doi.org/10.1016/j.neuroimage.2020.117051

  34. Siems M, Siegel M (2020) Dissociated neuronal phase- and amplitude-coupling patterns in the human brain. Neuroimage 209:116538. https://doi.org/10.1016/j.neuroimage.2020.116538

  35. Adhikari A, Sigurdsson T, Topiwala MA, Gordon JA (2010) Cross-correlation of instantaneous amplitudes of field potential oscillations: A straightforward method to estimate the directionality and lag between brain areas. Journal of Neuroscience Methods 191:191–200. https://doi.org/10.1016/j.jneumeth.2010.06.019

  36. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Human Brain Mapping 8:194–208

    Google Scholar 

  37. Rouder JN, Morey RD (2012) Default Bayes factors for model selection in regression. Multivar Behav Res 47:877–903. https://doi.org/10.1080/00273171.2012.734737

  38. Button KS, Ioannidis JPA, Mokrysz C et al (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376. https://doi.org/10.1038/nrn3475

    Article  Google Scholar 

  39. Erdfelder E, Faul F, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–1160. https://doi.org/10.3758/BRM.41.4.1149

    Article  Google Scholar 

  40. Lebreton M, Bavard S, Daunizeau J, Palminteri S (2019) Assessing inter-individual differences with task-related functional neuroimaging. Nat Hum Behav 3:897–905. https://doi.org/10.1038/s41562-019-0681-8

    Article  Google Scholar 

  41. Fair DA, Dosenbach NUF, Moore AH et al (2021) Developmental cognitive neuroscience in the era of networks and big data: strengths, weaknesses, opportunities, and threats. Annu Rev Dev Psychol 3

    Google Scholar 

Download references

Acknowledgements

We thank K. T. Jones for support. This work was funded by grants from the National Institute of Neurological Disorders and Stroke (R00NS115918, R01NS021135, U19NS107609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, E.L., Knight, R.T. (2023). How Can iEEG Be Used to Study Inter-Individual and Developmental Differences?. In: Axmacher, N. (eds) Intracranial EEG. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-20910-9_10

Download citation

Publish with us

Policies and ethics