Skip to main content

Centrosomes and Centrosome Equivalents in Other Systems

  • Chapter
  • First Online:
The Centrosome and its Functions and Dysfunctions

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 235))

Abstract

Stem cells are important to sustain tissue growth during development, to repair damaged tissue after injury, and to maintain homeostasis during adulthood. Precisely programmed stem cell renewal and differentiation is critical, as failure in balance can lead to tumorigenesis as a result of over-proliferation or to degeneration as a result of decline in stem cell functions (reviewed in Roth et al (2012); Chen et al (2021).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad FJ, Joshi HC, Centonze VE, Baas PW (1994) Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth. Neuron 12(2):271–280

    Article  CAS  Google Scholar 

  • Aist JR (2002) Mitosis and motor proteins in the filamentous ascomycete, Nectria haematococca, and some related fungi. Int Rev Cytol 212:239–263

    Article  CAS  Google Scholar 

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    Article  CAS  Google Scholar 

  • Andzelm MM, Chen X, Krzewski K, Orange JS, Strominger JL (2007) Myosin IIA is required for cytolytic granule exocytosis in human NK cells. J Exp Med 204:2285–2291

    Article  CAS  Google Scholar 

  • Angus KL, Griffiths GM (2013) Cell polarisation and the immunological synapse. Curr Opin Cell Biol 25(1):85–91

    Article  CAS  Google Scholar 

  • Avidor-Reiss T, Gopalakrishnan J, Blachon S, Polyanovsky A (2012) Centriole duplication and inheritance in Drosophila melanogaster. In: Schatten H (ed) The centrosome. Humana Press, a part of Springer Science+Business Media, LLC

    Google Scholar 

  • Baas PW (1996) The neuronal centrosome as a generator of microtubules for the axon. Curr Top Dev Biol 33:281–298

    Article  CAS  Google Scholar 

  • Baas PW, Falnikar A (2012) Chap. 18. Re-evaluation of the neuronal centrosome as a generator of microtubules for axons and dendrites. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Badano JL, Teslovich TM, Katsanis N (2005) The centrosome in human genetic disease. Nat Rev Genet 6:194–207

    Article  CAS  Google Scholar 

  • Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SM, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG (2005) A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 37(4):353–355. Erratum in: Nat Genet. 2005 May;37(5):555. Lizarraga, Sophia [corrected to Lizarraga, Sofia B]

    Article  CAS  Google Scholar 

  • Burkhardt JK, McIlvain JM Jr, Sheetz MP, Argon Y (1993) Lytic granules from cytotoxic T cells exhibit kinesindependent motility on microtubules in vitro. J Cell Sci 104(1):151–162

    Article  CAS  Google Scholar 

  • Burns S, Avena JS, Unruh JR, Yu Z, Smith SE, Slaughter BD, Winey M, Jaspersen SL (2015) Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. Elife 4:e08586

    Article  Google Scholar 

  • Cabernard C, Doe CQ (2007) Stem cell self-renewal: centrosomes on the move. Curr Biol 17(12):R465–R467

    Article  CAS  Google Scholar 

  • Camargo Ortega G, Falk S, Johansson PA, Peyre E, Broix L, Sahu SK, Hirst W, Schlichthaerle T, De Juan Romero C, Draganova K, Vinopal S, Chinnappa K, Gavranovic A, Karakaya T, Steininger T, Merl-Pham J, Feederle R, Shao W, Shi SH, Hauck SM, Jungmann R, Bradke F, Borrell V, Geerlof A, Reber S, Tiwari VK, Huttner WB, Wilsch-Bräuninger M, Nguyen L, Götz M (2019) The centrosome protein AKNA regulates neurogenesis via microtubule organization. Nature 567(7746):113–117

    Article  CAS  Google Scholar 

  • Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d’Angelo M (2019) Neuronal cells rearrangement during aging and neurodegenerative disease: metabolism, oxidative stress and organelles dynamic. Front Mol Neurosci 12:132

    Article  CAS  Google Scholar 

  • Chang P, Stearns T (2000) Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat Cell Biol 2(1):30–35

    Article  CAS  Google Scholar 

  • Chang P, Giddings TH Jr, Winey M, Stearns T (2003) É›-Tubulin is required for centriole duplication and microtubule organization. Nat Cell Biol 5:71–76

    Article  CAS  Google Scholar 

  • Chen C-T, Gubbels M-J (2013) The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant. J Cell Sci 126:3344–3355

    CAS  Google Scholar 

  • Chen C, Yamashita YM (2021) Centrosome-centric view of asymmetric stem cell division. Open Biol 11:200314. https://doi.org/10.1098/rsob.200314

  • Conduit PT, Richens JH, Wainman A, Holder J, Vicente CC, Pratt MB, Dix CI, Novak ZA, Dobbie IM, Schermelleh L, Raff JW (2014) A molecular mechanism of mitotic centrosome assembly in Drosophila. Elife 3:e03399

    Article  Google Scholar 

  • Cowan CR, Hyman AA (2004) Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431(7004):92–96

    Article  CAS  Google Scholar 

  • Cheng J, Türkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456:599–604

    Article  CAS  Google Scholar 

  • de Anda FC, Meletis K, Ge X, Rei D, Tsai L-H (2010) Centrosome motility is essential for initial axon formation in the neocortex. J Neurosci 30(31):10391–10406

    Article  Google Scholar 

  • de Anda FC, Pollarolo G, da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436(7051):704–708

    Article  Google Scholar 

  • Decker M, Jaensch S, Pozniakovsky A, Zinke A, O’Connell KF, Zachariae W, Myers E, Hyman AA (2011) Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr Biol 21(15):1259–1267

    Article  CAS  Google Scholar 

  • DiAntonio A, Hicke L (2004) Ubiquitin-dependent regulation of the synapse. Annu Rev Neurosci 27:223–246

    Article  CAS  Google Scholar 

  • Duband JL (2006) Neural crest delamination and migration: integrating regulations of cell interactions, locomotion, survival and fate. Adv Exp Med Biol 589:45–77

    Article  CAS  Google Scholar 

  • Fabunmi RP, Wigley WC, Thomas PJ, DeMartin GN (2000) Activity and regulation of the centrosome-associated proteasome. J Biol Chem 275:409–413

    Article  CAS  Google Scholar 

  • Faggioli F, Vijg J, Montagna C (2011) Chromosomal aneuploidy in the aging brain. Mech Ageing Dev 132:429–436

    Article  CAS  Google Scholar 

  • Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM (2008) Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA 105:7732–7737. https://doi.org/10.1073/pnas.0803027105

    Article  Google Scholar 

  • Fukuda A, Kuriya Y, Konishi J, Mutaguchi K, Uemura T, Miura D, Okamoto M (2019) Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae. J Biosci Bioeng 127:563–569

    Article  CAS  Google Scholar 

  • Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A 92:11879–11883

    Article  CAS  Google Scholar 

  • Gao X, Schmid M, Zhang Y, Sayumi Takeshita N, Fischer R (2019) The spindle pole body of Aspergillus nidulans is asymmetrical and contains changing numbers of γ-tubulin complexes. J Cell Sci 132:jcs234799

    Article  CAS  Google Scholar 

  • Garbrecht J, Laos T, Holzer E, Dillinger M, Dammermann A (2021) An acentriolar centrosome at the C. elegans ciliary base. Curr Biol 31(11):2418–2428.e8

    Article  CAS  Google Scholar 

  • Gauthier LR et al (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    Article  CAS  Google Scholar 

  • Geiger B, Rosen D, Berke G (1982) Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J Cell Biol 95(1):137–143

    Article  CAS  Google Scholar 

  • Gonzalez C (2008) Centrosome function during stem cell division: the devil is in the details. Curr Opin Cell Biol 20(6):694–698

    Article  CAS  Google Scholar 

  • Gräf R, Grafe M, Meyer I, Mitic K, Pitzen V (2021) The Dictyostelium centrosome. Cells 10:2657

    Article  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30(6):276–283

    Article  CAS  Google Scholar 

  • Huse M (2012) Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond. Front Immunol 3:235

    Article  CAS  Google Scholar 

  • Imai Y, Soda M, Takahashi R (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275:35661–35664

    Article  CAS  Google Scholar 

  • Ishikawa A, Tsuji S (1996) Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology 47:160–166

    Article  CAS  Google Scholar 

  • Izzi L, Attisano L (2004) Regulation of the TGFβ signaling pathway by ubiquitin-mediated degradation. Oncogene 23:2071–2078

    Article  CAS  Google Scholar 

  • Jana SC, Bettencourt-Dias M, Durand B, Megraw TL (2016) Drosophila melanogaster as a model for basal body research. Cilia 5:22

    Article  Google Scholar 

  • Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat Commun 2:243

    Article  Google Scholar 

  • Kasioulis I, Das RM, Storey KG (2017) Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination. Elife 6:e26215

    Article  Google Scholar 

  • Kaushal D, Contos JJ, Treuner K, Yang AH, Kingsbury MA, Rehen SK, McConnell MJ, Okabe M, Barlow C, Chun J (2003) Alteration of gene expression by chromosome loss in the postnatal mouse brain. J Neurosci 23:5599–5606

    Article  CAS  Google Scholar 

  • Kilmartin JV (2014) Lessons from yeast: the spindle pole body and the centrosome. Philos Trans R Soc B 369:20130456

    Article  Google Scholar 

  • Kitada T et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  Google Scholar 

  • Kodani A, Kristensen I, Huang L, Sütterlin C (2009) GM130-dependent control of Cdc42 activity at the Golgi regulates centrosome organization. Mol Biol Cell 20:1192–1200

    Article  CAS  Google Scholar 

  • Kodani A, Sutterlin C (2008) The Golgi protein GM130 regulates centrosome morphology and function. Mol Biol Cell 19:745–753

    Article  CAS  Google Scholar 

  • Koonce MP, Tikhonenko I (2018) Centrosome positioning in Dictyostelium: moving beyond microtubule tip dynamics. Cells 7:29

    Article  Google Scholar 

  • Kuhn JR, Poenie M (2002) Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16:111–112

    Article  CAS  Google Scholar 

  • Kuijpers M, Hoogenraad CC (2011) Centrosomes, microtubules and neuronal development. Mol Cell Neurosci 48(4):349–358

    Article  CAS  Google Scholar 

  • Kupfer A, Dennert G (1984) Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J Immunol 133:2762–2766

    CAS  Google Scholar 

  • Kupfer A, Dennert G, Singer SJ (1983) Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc Natl Acad Sci U S A 80:7224–7228

    Article  CAS  Google Scholar 

  • Kupfer A, Dennert G, Singer SJ (1985) The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J Mol Cell Immunol 2(1):37–49

    CAS  Google Scholar 

  • Kupfer A, Singer SJ (1989) The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J Exp Med 170(5):1697–1713

    Article  CAS  Google Scholar 

  • Kupfer A, Singer SJ, Dennert G (1986) On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J Exp Med 163(3):489–498

    Article  CAS  Google Scholar 

  • Kurowska M, Goudin N, Nehme NT, Court M, Garin J, Fischer A, de Saint Basile G, Ménasché G (2012) Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 119(17):3879–3889. Erratum in: Blood. 2014 Feb 27;123(9):1432

    Article  CAS  Google Scholar 

  • Lambert JD, Nagy LM (2002) Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420:682–686. https://doi.org/10.1038/nature01241

    Article  CAS  Google Scholar 

  • Lattao R, Kovács L, Glover DM (2017) The centrioles, centrosomes, basal bodies, and cilia of Drosophila melanogaster. Genetics 206:33–53

    Article  CAS  Google Scholar 

  • Lehtonen S, Shah M, Nielsen R, Iino N, Ryan JJ, Zhou H, Farquhar MG (2008) The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis. Mol Biol Cell 19(7):2949–2961

    Article  CAS  Google Scholar 

  • Lemgruber L, Cyrklaff M, Frischknecht F (2012) Centrosomes and cell division in apicomplexa. In: Schatten H (ed) The centrosome. Humana Press, a part of Springer Science+Business Media, LLC

    Google Scholar 

  • Mehta DS, Zein-Sabatto H, Ryder PV, Lee J, Lerit DA (2022) Drosophila centrocortin is dispensable for centriole duplication but contributes to centrosome separation. G3 (Bethesda) 12(2):jkab434. https://doi.org/10.1093/g3journal/jkab434

    Article  CAS  Google Scholar 

  • Mentlik AN, Sanborn KB, Holzbaur EL, Orange JS (2010) Rapid lytic granule convergence to the MTOC in natural killer cells is dependent on dynein but not cytolytic commitment. Mol Biol Cell 21:2241–2256

    Article  CAS  Google Scholar 

  • Miao Y-L, Kikuchi K, Sun Q-Y, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15(5):573–585

    Article  Google Scholar 

  • Morlon-Guyot J, Francia ME, Dubremetz J-F, Daher W (2017) Towards a molecular architecture of the centrosome in Toxoplasma gondii. Cytoskeleton 74:55–71

    Article  CAS  Google Scholar 

  • Müller H, Schmidt D, Steinbrink S, Mirgorodskaya E, Lehmann V, Habermann K, Dreher F, Gustavsson N, Kessler T, Lehrach H, Herwig R, Gobom J, Ploubidou A, Boutros M, Lange BMH (2010) Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J 29:3344–3357

    Article  Google Scholar 

  • Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity. Nature 441:1087–1093

    Article  CAS  Google Scholar 

  • Murph M, Singh S, Schvarzstein M (2022) A combined in silico and in vivo approach to the structure-function annotation of SPD-2 provides mechanistic insight into its functional diversity. Cell Cycle 21(18):1958–1979

    Article  CAS  Google Scholar 

  • Nakagawa Y, Yamane Y, Okanoue T, Tsukita S, Tsukita S (2001) Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol Biol Cell 12(6):1687–1697

    Article  CAS  Google Scholar 

  • Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23(23):2675–2699

    Article  Google Scholar 

  • Oliferenko S, Chew TG, Balasubramanian MK (2009) Positioning cytokinesis. Genes Dev 23:660–674

    Article  CAS  Google Scholar 

  • Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    Article  CAS  Google Scholar 

  • Poenie M, Christian L, Tan S, Sykulev Y (2012) Chap. 21. Role of the MTOC in T Cell Effector Functions. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Poenie M, Kuhn J, Combs J (2004) Real-time visualization of the cytoskeleton and effector functions in T cells. Curr Opin Immunol 16:428–438

    Article  CAS  Google Scholar 

  • Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A (2019) Chromosome instability and mosaic aneuploidy in neurodegenerative and neurodevelopmental disorders. Front Genet 10:1092

    Article  CAS  Google Scholar 

  • Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH, Shen W, Sun SC, Schatten H, Sun QY (2013) The root of reduced fertility in aged women and possible therapeutic options: current status and future perspectives. Mol Aspects Med 38:54–85

    Article  Google Scholar 

  • Rebollo E, Sampaio P, Januschke J, Llamazares S, Varmark H, González C (2007) Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell 12(3):467–474

    Article  CAS  Google Scholar 

  • Redemann S, Baumgart J, Lindow N, Shelley M, Nazockdast E, Kratz A, Prohaska S, Brugue J, Thomas FS, Müller-Reichert T (2017) C. elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nat Commun 8:15288

    Article  Google Scholar 

  • Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 98:13361–13366

    Article  CAS  Google Scholar 

  • Rincón AM, Monje-Casas F (2020) A guiding torch at the poles: the multiple roles of spindle microtubule-organizing centers during cell division. Cell Cycle 19(12):1405–1421

    Article  Google Scholar 

  • Roth TM, Yamashita YM, Cheng J (2012) Asymmetric centrosome behavior in stem cell divisions. In: Schatten H (ed) The centrosome. Humana Press, a part of Springer Science+Business Media, LLC

    Google Scholar 

  • Rusan NM, Peifer M (2007) A role for a novel centrosome cycle in asymmetric cell division. J Cell Biol 177:13–20

    Google Scholar 

  • Sakakibara A, Sato T, Ando R, Noguchi N, Masaoka M, Miyata T (2014) Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. Cereb Cortex 24(5):1301–1310

    Article  Google Scholar 

  • Sanborn KB, Mace EM, Rak GD, Difeo A, Martignetti JA, Pecci A, Bussel JB, Favier R, Orange JS (2011) Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules to promote NK-cell cytotoxicity. Blood 118(22):5862–5871

    Article  CAS  Google Scholar 

  • Sanborn KB, Rak GD, Maru SY, Demers K, Difeo A, Martignetti JA, Betts MR, Favier R, Banerjee PP, Orange JS (2009) Myosin IIA associates with NK cell lytic granules to enable their interaction with F-actin and function at the immunological synapse. J Immunol 182:6969–6984

    Article  CAS  Google Scholar 

  • Sánchez-Huertas C, Freixo F, Viais R, Lacasa C, Soriano E, Lüders J (2016) Noncentrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat Commun 7(1):12187

    Article  Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102(38):13652–13657

    Article  CAS  Google Scholar 

  • Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2011) The significant role of centrosomes in stem cell division and differentiation. Microsc Microanal 17(4):506–512

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2018) Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 150:303–325. https://doi.org/10.1007/s00418-018-1698-1

    Article  CAS  Google Scholar 

  • Scheer U (2014) Historical roots of centrosome research: Discovery of Boveri’s microscope slides in Würzburg. Philos Trans R Soc Lond B Biol Sci 369:20130469

    Article  Google Scholar 

  • Schwarz A, Sankaralingam P, O’Connell KF, Müller-Reichert T (2018) Revisiting centrioles in nematodes—historic findings and current topics. Cells 7:101. https://doi.org/10.3390/cells7080101

    Article  CAS  Google Scholar 

  • Shimura H et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  CAS  Google Scholar 

  • Shoukimas GM, Hinds JW (1978) The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J Comp Neurol 179(4):795–830

    Article  CAS  Google Scholar 

  • Stiess M, Maghelli N, Kapitein LC, Gomis-Rüth S, Wilsch-Bräuninger M, Hoogenraad CC, Tolić-Nørrelykke IM, Bradke F (2010) Axon extension occurs independently of centrosomal microtubule nucleation. Science 327(5966):704–707

    Article  CAS  Google Scholar 

  • Stinchcombe J, Bossi G, Booth S, Griffiths G (2001a) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15:751–761

    Article  CAS  Google Scholar 

  • Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, Seabra MC, Griffiths GM (2001b) Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 152(4):825–834

    Article  CAS  Google Scholar 

  • Stinchcombe JC, Griffiths GM (2014) Communication, the centrosome and the immunological synapse. Philos Trans R Soc Lond B Biol Sci 369:20130463

    Article  Google Scholar 

  • Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465

    Article  CAS  Google Scholar 

  • Takahashi H et al (1994) Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology 44:437–441

    Article  CAS  Google Scholar 

  • Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366(1):34–54

    Article  CAS  Google Scholar 

  • Tomasina R, González FC, Francia ME (2021) Structural and functional insights into the microtubule organizing centers of Toxoplasma gondii and Plasmodium spp. Microorganisms 9(12):2503

    Article  CAS  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46(3):383–388

    Article  CAS  Google Scholar 

  • Vijg J, Dolle ME (2007) Genome instability: cancer or aging? Mech Ageing Dev 128:466–468

    Article  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490

    Article  CAS  Google Scholar 

  • Wojcik C, Schroeter D, Wilk S, Lamprecht J, Paweletz N (1996) Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur J Cell Biol 71:311–318

    CAS  Google Scholar 

  • Yamashita YM (2009a) The centrosome and asymmetric cell division. Prion 3:84–88

    Article  Google Scholar 

  • Yamashita YM (2009b) Regulation of asymmetric stem cell division: spindle orientation and the centrosome. Front Biosci 14:3003–3011

    Article  CAS  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521

    Article  CAS  Google Scholar 

  • Yamashita YM, Yuan H, Cheng J, Hunt AJ (2010) Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harbor Perspect Biol 2(1):a001313

    Article  Google Scholar 

  • Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ, Chun J (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23:10454–10462

    Article  CAS  Google Scholar 

  • Yi J, Wu X, Chung AH, Chen JK, Kapoor TM, Hammer JA (2013) Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J Cell Biol 202:779–792

    Article  CAS  Google Scholar 

  • Zhang X, Chen MH, Wu X, Kodani A, Fan J, Doan R, Ozawa M, Ma J, Yoshida N, Reiter JF et al (2016) Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 166(1147–1162):e1115

    Google Scholar 

  • Zhao J, Ren Y, Jiang Q, Feng J (2003) Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci 116:4011–4019

    Article  CAS  Google Scholar 

  • Zhong Z-S, Zhang G, Meng X-Q, Zhang Y-L, Chen D-Y, Schatten H, Sun Q-Y (2005) Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos. Exp Cell Res 306:35–46

    Article  CAS  Google Scholar 

  • Zou C, Li J, Bai Y, Gunning WT, Wazer DE, Band V, Gao Q (2005) Centrobin: a novel daughter centriole–associated protein that is required for centriole duplication. J Cell Biol 171(3):2437–2445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H. (2022). Centrosomes and Centrosome Equivalents in Other Systems. In: The Centrosome and its Functions and Dysfunctions. Advances in Anatomy, Embryology and Cell Biology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-031-20848-5_9

Download citation

Publish with us

Policies and ethics