Skip to main content

Centrosomes in Reproduction

  • Chapter
  • First Online:
The Centrosome and its Functions and Dysfunctions

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 235))

Abstract

Centrosome functions are vitally important for all aspects of reproduction with essential functions during meiosis, fertilization, cell division, centrosome remodeling during cellular polarization for tissue formation, and all stages of subsequent embryo development. Any defects in centrosome organization and dynamics can result in meiotic spindle formation errors, meiotic division errors, infertility, subfertility, arrested or failed development, and predisposition to various diseases including cancer. These aspects of reproduction will be addressed in more detail in the following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai J-S, Li M, Schatten H, Sun Q-Y (2009) Regulatory mechanism of spindle movements during oocyte meiotic division. Asian Aust J Anim Sci 22:1447–1486

    Article  Google Scholar 

  • Ai J-S, Wang Q, Li M, Shi LH, Ola SI, Xiong B, Yin S, Chen DY, Sun QY (2008a) Roles of microtubules and microfilaments in spindle movements during rat oocyte meiosis. J Reprod Dev 54:391–396

    Article  Google Scholar 

  • Ai J-S, Wang Q, Yin S, Shi L-H, Xiong B, Ouyang Y-C, Hou Y, Chen D-Y, Schatten H, Sun Q-Y (2008b) Regulation of peripheral spindle movement and spindle rotation during mouse oocyte meiosis: new perspectives. Microsc Microanal 14:349–356

    Article  CAS  Google Scholar 

  • Alvarez Sedó CA, Schatten H, Combelles C, Rawe VY (2011) The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 17(6):392–398. https://doi.org/10.1093/molehr/gar009

    Article  CAS  Google Scholar 

  • Brunet S, Maro B (2005) Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction 130:801–811

    Article  CAS  Google Scholar 

  • Calarco-Gillam PC, Siebert MC, Hubble R, Mitchison T, Kirschner M (1983) Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell 35:621–629

    Article  CAS  Google Scholar 

  • Chemes HE (2012) Chap. 2. Sperm centrioles and their dual role in flagellogenesis and cell cycle of the zygote structure, function, and pathology. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Chemes HE (2000) Phenotypes of sperm pathology: genetic and acquired forms in infertile men. J Androl 21(6):799–808

    CAS  Google Scholar 

  • Chemes HE, Rawe VY (2003) Sperm pathology: a step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum Reprod Update 9(5):405–428

    Article  Google Scholar 

  • Comizzoli P, Wildt DE (2012) Centrosomal functions and dysfunctions in cat spermatozoa. In: Schatten H (ed) The centrosome. Humana Press, pp 49–58

    Chapter  Google Scholar 

  • Eichenlaub-Ritter U, Chandley AC, Gosden RG (1986) Alterations to the microtubular cytoskeleton and increased disorder of chromosome alignment in spontaneously ovulated mouse oocytes aged in vivo: an immunofluorescence study. Chromosoma 94:337–345

    Article  CAS  Google Scholar 

  • Eichenlaub-Ritter U, Stahl A, Luciani JM (1988) The microtubular cytoskeleton and chromosomes of unfertilized human oocytes aged in vitro. Hum Genet 80:259–264

    Article  CAS  Google Scholar 

  • Fan HY, Huo LJ, Meng XQ, Zhong ZS, Hou Y, Chen DY, Sun QY (2003) Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Biol Reprod 69:1552–1564

    Article  CAS  Google Scholar 

  • Fan H-Y, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick S, Richards JS (2009) MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324:938–941

    Article  CAS  Google Scholar 

  • Ge ZJ, Schatten H, Zhang CL, Sun QY (2015) Oocyte ageing and epigenetics. Reproduction 149(3):R103–R114

    Article  CAS  Google Scholar 

  • George MA, Pickering SJ, Braude PR, Johnson MH (1996) The distribution of α- and γ-tubulin in fresh and aged human and mouse oocytes exposed to cryoprotectant. Mol Hum Reprod 2(6):445–456

    Article  CAS  Google Scholar 

  • Gosden R, Lee B (2010) Portrait of an oocyte: our obscure origin. J Clin Invest 120:973–983

    Article  CAS  Google Scholar 

  • Goud AP, Goud PT, Diamond MP, Abu-Soud HM (2005a) Nitric oxide delays oocyte aging. Biochemistry 44:11361–11368

    Article  Google Scholar 

  • Goud AP, Goud PT, Diamond MP, Van Oostveldt P, Hughes MR (2005b) Microtubule turnover in ooplasm biopsy reflects ageing phenomena in the parent oocyte. Reprod Biomed 11:43–52

    Article  CAS  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  CAS  Google Scholar 

  • Hinduja I, Zaveri K, Baliga N (2008) Human sperm centrin levels and outcome of intracytoplasmic sperm injection (ICSI)—a pilot study. Indian J Med Res 128:606–610

    Google Scholar 

  • Hinduja I, Zaveri K, Baliga N (2010) Correlation of human sperm centrosomal proteins with fertility. J Hum Reprod Sci 3(2):95–101

    Article  Google Scholar 

  • Holubcová Z, Blayney M, Elder K, Schuh M (2015) Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348(6239):1143–1147. https://doi.org/10.1126/science.aaa9529

    Article  CAS  Google Scholar 

  • Huang JC, Yan LY, Lei ZL, Miao YL, Shi LH, Yang JW, Wang Q, Ouyang YC, Sun QY, Chen DY (2007) Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol Reprod 77:666–670

    Article  CAS  Google Scholar 

  • Hyder CL, Isoniemi KO, Torvaldson ES, Eriksson JE (2011) Insights into intermediate filament regulation from development to ageing. J Cell Sci 124:1363–1372

    Article  CAS  Google Scholar 

  • Jeseta M, Petr J, Krejcova T, Chmelikova E, Jilek F (2008) In vitro ageing of pig oocytes: effects of the histone deacetylase inhibitor trichostatin A. Zygote 16:145–152

    Article  CAS  Google Scholar 

  • Kallenbach RJ (1982) Continuous hypertonic conditions activate and promote the formation of new centrioles within cytasters in sea urchin eggs. Cell Biol Int Rep 6(11):1025–1031

    Article  CAS  Google Scholar 

  • Kim NH, Moon SJ, Prather RS, Day BN (1996) Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Mol Reprod Dev 43:513–518

    Google Scholar 

  • Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD (2020) A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 5(20):e141523

    Article  Google Scholar 

  • Kuliev A, Cieslak J, Verlinsky Y (2005) Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenet Genome Res 111:193–198

    Article  CAS  Google Scholar 

  • Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak Janzen J (2011) Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online 22:2–8

    Article  Google Scholar 

  • Lee J, Miyano T, Moor RM (2000) Spindle formation and dynamics of γ-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes. Biol Reprod 62:1184–1192

    Article  CAS  Google Scholar 

  • Lee JH, Campbell KH (2008) Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer. Cloning Stem Cells 10:381–390

    Article  CAS  Google Scholar 

  • Li S, Ou XH, Wang ZB, Xiong B, Tong JS, Wei L, Li M, Yuan J, Ouyang YC, Hou Y, Schatten H, Sun QY (2010) ERK3 is required for metaphase-anaphase transition in mouse oocyte meiosis. PLoS One 29:5(9)

    CAS  Google Scholar 

  • Liang CG, Su YQ, Fan HY, Schatten H, Sun QY (2007) Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol Endocrinol 21(9):2037–2055

    Article  CAS  Google Scholar 

  • Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Repro 72:2–13

    Article  CAS  Google Scholar 

  • Manandhar G, Sutovsky P, Joshi HC, Stearns T, Schatten G (1998) Centrosome reduction during mouse spermiogenesis. Dev Biol 203(2):424–434

    Article  CAS  Google Scholar 

  • Maro B, Howlett SK, Webb M (1985) Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol 101:1665–1672

    Article  CAS  Google Scholar 

  • Mazia D, Harris PJ, Bibring T (1960) The multiplicity of the mitotic centers and the time-course of their duplication and separation. J Biophys Biochem Cytol 7:1–20

    Article  CAS  Google Scholar 

  • Miao Y-L, Kikuchi K, Sun Q-Y, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15:573–585

    Article  Google Scholar 

  • Miao YL, Kikuchi K, Sun QY, Schatten H (2009a) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reprod Update 15(5):573–585

    Article  Google Scholar 

  • Miao YL, Sun Q-Y, Zhang X, Zhao JG, Zhao MT, Spate L, Prather RS, Schatten H (2009b) Centrosome abnormalities during porcine oocyte aging. Environ Mol Mutagen 50(8):666–671

    Article  CAS  Google Scholar 

  • Mitchell V, Rives N, Albert M, Peers MC, Selva J, Clavier B, Escudier E, Escalier D (2006) Outcome of ICSI with ejaculated spermatozoa in a series of men with distinct ultrastructural flagellar abnormalities. Hum Reprod 21(8):2065–2074

    Article  Google Scholar 

  • Ou XH, Li S, Xu BZ, Wang ZB, Quan S, Li M, Zhang QH, Ouyang YC, Schatten H, Xing FQ, Sun QY (2010) p38a MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle 9:4130–4143

    Article  CAS  Google Scholar 

  • Pacchierotti F, Ranaldi R, Eichenlaub-Ritter U, Attia S, Adler ID (2008) Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse. Mutat Res 651(1–2):64–70

    Article  CAS  Google Scholar 

  • Pellestor F, Anahory T, Hamamah S (2005) Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet Genome Res 111:206–212

    Article  CAS  Google Scholar 

  • Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E (2013) Genetically engineered pig models for human diseases. Annu Rev Anim Biosci 1:203–219

    Article  Google Scholar 

  • Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH, Shen W, Sun SC, Schatten H, Sun QY (2014) The root of reduced fertility in aged women and possible; therapeutic options: current status and future perspectives. Mol Aspects Med 38:54–85

    Article  Google Scholar 

  • Rausell F, Pertusa JF, Gomez-Piquer V, Hermenegildo C, Garcia-Perez MA, Cano A, Tarin JJ (2007) Beneficial effects of dithiothreitol on relative levels of glutathione S-transferase activity and thiols in oocytes, and cell number, DNA fragmentation and allocation at the blastocyst in the mouse. Mol Reprod Devel 74:860–869

    Article  CAS  Google Scholar 

  • Rawe VY, Chemes H (2009) Exploring the cytoskeleton during intracytoplasmic sperm injection in humans. In: Carroll DJ (ed) Microinjection: methods and applications, vol 518. Humana Press

    Chapter  Google Scholar 

  • Rawe VY, Terada Y, Nakamura S, Chillik CF, Olmedo SB, Chemes HE (2002) A pathology of the sperm centriole responsible for defective sperm aster formation, syngamy and cleavage. Hum Reprod 17:2344–2349

    Article  CAS  Google Scholar 

  • Rosenbusch BE, Schneider M (2006) Cytogenetic analysis of human oocytes remaining unfertilized after intracytoplasmic sperm injection. Fertil Steril 85:302–307

    Article  Google Scholar 

  • Sathananthan AH (1997) Mitosis in the human embryo. The vital role of the sperm centrosome (centriole)—review. Histol Histopathol 12:827–856

    CAS  Google Scholar 

  • Sathananthan AH (2009) Human centriole: origin and how it impacts fertilization, embryogenesis, infertility and cloning. Indian J Med Res 129:348–350

    Google Scholar 

  • Sathananthan AH, Kola I, Osborne J, Trounson A, Ng SC, Bongso A, Ratnam SS (1991) Centrioles in the beginning of human development. Proc Natl Acad Sci U S A 88:4806–4810

    Article  CAS  Google Scholar 

  • Sathananthan AH, Ratnam SS, Ng SC, Tarin JJ, Gianoroli L, Trounson A (1996) The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 11:345–356

    Article  CAS  Google Scholar 

  • Sathananthan AH, Ratnasooriya WD, de Silva PK, Menezes J (2001) Characterization of human gamete centrosomes for assisted reproduction. Ital J Anat Embryol 106(2 suppl 2):61–73

    CAS  Google Scholar 

  • Sirard MA, Richard F, Blondin P, Robert C (2006) Contribution of the oocyte to embryo quality. Theriogenology 65:126–136

    Article  Google Scholar 

  • Swain JE, Pool TB (2008) ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 14:431–446

    Article  Google Scholar 

  • Schatten H (1994) Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins. Cell Motil Cytoskel 27:59–68

    Article  CAS  Google Scholar 

  • Schatten H, Rawe VY, Sun QY (2012) Cytoskeletal architecture of human oocytes with focus on centrosomes and their significant role in fertilization. In: Nagy ZP, Varghese AC, Agarwal A (eds) Practical manual of in vitro fertilization: advanced methods and novel devices. Humana Press (Springer), New York

    Google Scholar 

  • Schatten H, Sun QY (2010) The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin Cell Dev Biol 21:174–184

    Article  Google Scholar 

  • Schatten H, Sun QY (2011a) Centrosome dynamics during meiotic spindle formation in oocyte maturation. Mol Reprod Dev 78:757–768

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2011b) New insights into the role of centrosomes in mammalian fertilisation and implications for ART. Reproduction 142:793–801

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2011c) The significant role of centrosomes in stem cell division and differentiation. Microsc Microanal 17(4):506–512

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2013a) Chromosome behavior and spindle formation in mammalian oocytes. In: Trounson (ed) Biology and pathology of the oocyte. Gosden & Eichenlaub-Ritter 2nd Edition. Cambridge University Press, New York

    Google Scholar 

  • Schatten H, Sun Q (2013b) The role of the sperm centrosome in reproductive fitness. In: Carrell D (ed) Paternal influences on human reproductive success. Cambridge University Press, Cambridge, pp 50–60. https://doi.org/10.1017/CBO9781139169349.007

    Chapter  Google Scholar 

  • Schatten H, Sun QY (2015) Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod Fertil Dev 27(6):934–943. https://doi.org/10.1071/RD14493

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2018) Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 150:303–325. https://doi.org/10.1007/s00418-018-1698-1

    Article  CAS  Google Scholar 

  • Schatten G, Simerly C, Schatten H (1985) Microtubule configurations during fertilization, mitosis and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci USA 82:4152–4156

    Article  CAS  Google Scholar 

  • Schatten H, Schatten G, Mazia D, Balczon R, Simerly C (1986) Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc Natl Acad Sci USA 83:105–109

    Article  CAS  Google Scholar 

  • Schatten G, Simerly C, Asai DJ, Szöke E, Cooke P, Schatten H (1988) Acetylated α-tubulin in microtubules during mouse fertilization and early development. Dev Biol 130:74–86

    Article  CAS  Google Scholar 

  • Scheer U (2014) Historical roots of centrosome research: Discovery of Boveri’s microscope slides in Würzburg. Philos Trans R Soc Lond B Biol Sci 369:20130469

    Article  Google Scholar 

  • Tarin JJ, Ten J, Vendrell FJ, Cano A (1998) Dithiothreitol prevents age-associated decrease in oocyte/conceptus viability in vitro. Hum Reprod 13:381–386

    Article  CAS  Google Scholar 

  • Voronina E, Wessel GM (2003) The regulation of oocyte maturation. Curr Top Dev Biol 58:53–110

    Google Scholar 

  • Walters EM, Wells KD, Bryda EC, Schommer S, Prather RS (2017) Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab Anim 46(4):167–172

    Article  Google Scholar 

  • Wang ZB, Schatten H, Sun QY (2011) Why is chromosome segregation error in oocytes increased with maternal. aging? Physiology 26(5):314–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H. (2022). Centrosomes in Reproduction. In: The Centrosome and its Functions and Dysfunctions. Advances in Anatomy, Embryology and Cell Biology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-031-20848-5_6

Download citation

Publish with us

Policies and ethics