Skip to main content

Virus Exploitation (Hijacking) of Centrosomes

  • Chapter
  • First Online:
The Centrosome and its Functions and Dysfunctions

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 235))

Abstract

One of the most interesting aspects of host cell–viral interactions is how the pathogen exploits the host cell cytoskeleton and centrosomes for survival in the host cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ban S, Shinohara T, Hirai Y, Moritaku Y, Cologne JB, MacPhee DG (2001) Chromosomal instability in BRCA1- or BRCA2-defective human cancer cells detected by spontaneous micronucleus assay. Mutat Res 474:15–23

    Article  CAS  Google Scholar 

  • Barthelmes HU, Grue P, Feineis S, Straub T, Boege F (2000) Active DNA topoisomerase II alpha is a component of the salt-stable centrosome core. J Biol Chem 275:38823–38830

    Article  CAS  Google Scholar 

  • Bouckson-Castaing V, Moudjou M, Ferguson DJ, Mucklow S, Belkaid Y, Milon G, Crocker PR (1996) Molecular characterisation of ninein, a new coiled-coil protein of the centrosome. J Cell Sci 109(1):179–190

    Google Scholar 

  • Bystrevskaya VB, Lobova TV, Smirnov VN, Makarova NE, Kushch AA (1997) Centrosome injury in cells infected with human cytomegalovirus. J Struct Biol 120:52–60

    Article  CAS  Google Scholar 

  • Dohner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, Vallee R, Sodeik B (2002) Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell 13:2795–2809

    Article  CAS  Google Scholar 

  • Gabriel E, Ramani A, Karow U, Gottardo M, Natarajan K, Gooi LM, Goranci-Buzhala G, Krut O, Peters F, Nikolic M, Kuivanen S, Korhonen E, Smura T, Vapalahti O, Papantonis A, Schmidt-Chanasit J, Riparbelli M, Callaini G, Kronke M, Utermohlen O, Gopalakrishnan J (2017). Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20:397–406 e395

    Google Scholar 

  • Hung JJ, Chung CS, Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol 76:1379–1390

    Article  CAS  Google Scholar 

  • Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM (1999) GMAP-210, a cis-Golgi network associated protein, is a minus end micro tubule binding protein. J Cell Biol 145:83–98. https://doi.org/10.1083/jcb.145.1.83

    Article  CAS  Google Scholar 

  • Kesari AS, Heintz VJ, Poudyal S, Miller AS, Kuhn RJ, LaCount DJ (2020) Zika virus NS5 localizes at centrosomes during cell division. Virology 541:52–62

    Article  CAS  Google Scholar 

  • Kotsakis A, Pomeranz LE, Blouin A, Blaho JA (2001) Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein. J Virol 75:8697–8711

    Article  CAS  Google Scholar 

  • Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, Xu Z (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:672

    Google Scholar 

  • McDougall WM, Perreira JM, Hung HF, Vertii A, Xiaofei E, Zimmerman W, Kowalik TF, Doxsey S, Brass AL (2019). Viral infection or ifn-alpha alters mitotic spindle orientation by modulating pericentrin levels. iScience 12:270–279

    Google Scholar 

  • Minemoto Y, Shimura M, Ishizaka Y, Masamune Y, Yamashita K (1999) Multiple centrosome formation induced by the expression of Vpr gene of human immunodeficiency virus. Biochem Biophys Res Commun 258:379–384

    Article  CAS  Google Scholar 

  • Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113:3013–3023

    Article  CAS  Google Scholar 

  • Onorati M, Li Z, Liu F, Sousa AMM, Nakagawa N, Li M, Dell’Anno MT, Gulden FO, Pochareddy S, Tebbenkamp ATN, Han W, Pletikos M, Gao T, Zhu Y, Bichsel C, Varela L, Szigeti-Buck K, Lisgo S, Zhang Y, Testen A, Gao XB, Mlakar J, Popovic M, Flamand M, Strittmatter SM, Kaczmarek LK, Anton ES, Horvath TL, Lindenbach BD, Sestan N (2016) Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell reports 16:2576–2592

    Google Scholar 

  • Ou YY, Mack GJ, Zhang M, Rattner JB (2002) CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci 115:1825–1835

    Google Scholar 

  • Ploubidou A, Moreau V, Ashman K, Reckmann I, Gonzalez C, Way M (2000) Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO J 19:3932–3944

    Article  CAS  Google Scholar 

  • Scaplehorn N, Way M (2004) Manipulation of centrosomes and the microtubule cytoskeleton during infection by intracellular pathogens. In: Nigg EA (ed) Centrosomes in development and disease. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 3-527-30980-2

    Google Scholar 

  • Souza BS, Sampaio GL, Pereira CS, Campos GS, Sardi SI, Freitas LA, Figueira CP, Paredes BD, Nonaka CK, Azevedo CM, Rocha VP, Bandeira AC, Mendez-Otero R, Dos Santos RR, Soares MB (2016) Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Scientific reports 6:39775

    Google Scholar 

  • Watanabe N, Yamaguchi T, Akimoto Y, Rattner JB, Hirano H, Nakauchi H (2000) Induction of M-phase arrest and apoptosis after HIV-1 Vpr expression through uncoupling of nuclear and centrosomal cycle in HeLa cells. Exp Cell Res 258:261–269

    Article  CAS  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490

    Article  CAS  Google Scholar 

  • Wolf B, Diop F, Ferraris P, Wichit S, Busso C, Misse D, Gonczy P (2017) Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning. Open Biol 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Ethics declarations

The author declares that she has no conflict of interest. This chapter does not contain any studies with animals performed by the author.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H. (2022). Virus Exploitation (Hijacking) of Centrosomes. In: The Centrosome and its Functions and Dysfunctions. Advances in Anatomy, Embryology and Cell Biology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-031-20848-5_5

Download citation

Publish with us

Policies and ethics