Skip to main content

Centrosome Dysfunctions in Cancer

  • Chapter
  • First Online:
The Centrosome and its Functions and Dysfunctions

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 235))

Abstract

As major accomplishments and breakthroughs in centrosome research had been achieved by Theodor Boveri in reproductive cells with the invertebrate sea urchin being an ideal model system for such studies on fertilization, cell division, and embryo development, these studies also gave rise to Boveri’s brilliant concept regarding cancer cells. He discovered that eggs fertilized with two sperm resulted in tripolar mitosis and abnormal cell division, similar to cells observed in cancer tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acilan C, Saunders WS (2008) A tale of too many centrosomes. Cell 134:572–575

    Article  CAS  Google Scholar 

  • Alvarez Sedó CA, Schatten H, Combelles C, Rawe VY (2011) The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 17(6):392–398. https://doi.org/10.1093/molehr/gar009

    Article  CAS  Google Scholar 

  • Boutros R (2012) Chap. 11. Regulation of centrosomes by cyclin-dependent kinases. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. G. Fischer, Jena, Germany

    Google Scholar 

  • Brinkley BR, Goepfert TM (1998) Supernumerary centrosomes and cancer: Boveri’s hypothesis resurrected. Cell Motil Cytoskeleton 41:281–288

    Article  CAS  Google Scholar 

  • Carroll E, Okuda M, Horn HF, Biddinger P, Stambrook PJ, Gleich LL, Li YQ, Tarapore P, Fukasawa K (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18:1935–1944

    Article  CAS  Google Scholar 

  • Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7:1122–1144

    Article  CAS  Google Scholar 

  • Cheung CH, Coumar MS, Chang JY, Hsieh HP (2011) Aurora kinase inhibitor patents and agents in clinical testing: an update (2009–2010). Expert Opin Ther Pat 21:857–884

    Article  CAS  Google Scholar 

  • Duensing S, Munger K (2003) Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog Cell Cycle Res 5:383–391

    Google Scholar 

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97:10002–10007

    Article  CAS  Google Scholar 

  • Fukasawa K (2007) Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7(12):911–924. https://doi.org/10.1038/nrc2249. PMID: 18004399.

    Article  CAS  Google Scholar 

  • Fukasawa K (2012) Chap. 10. Molecular links between centrosome duplication and other cell cycle associated events. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747

    Article  CAS  Google Scholar 

  • Ho YS, Duh JS, Jeng JH, Wang YJ, Liang YC, Lin CH, Tseng CJ, Yu CF, Chen RJ, Lin JK (2001) Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer 91:393–401

    Article  CAS  Google Scholar 

  • Kammerer S, Roth RB, Hoyal CR, Reneland R, Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F, Rehbock J, Cantor CR, Nelson MR, Brown A (2005) Association of the NuMA region on chromosome 11q13 with breast cancer susceptibility. Proc Natl Acad Sci USA 102(6):2004–2009

    Article  CAS  Google Scholar 

  • Korzeniewski N, Wheeler S, Chatterjee P et al (2010) A novel role of the aryl hydrocarbon receptor (AhR) in centrosome amplification—implications for chemoprevention. Mol Cancer 9:153

    Article  Google Scholar 

  • Korzeniewski N, Duensing S (2012) Chap, 12. Disruption of centrosome duplication control and induction of mitotic instability by the high-risk human papillomavirus oncoproteins E6 and E7. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Krämer A, Maier B, Bartek J (2011) Centrosome clustering and chromosomal (in)stability: a matter of life and death. Mol Oncol 5:324–335

    Article  Google Scholar 

  • Krämer A, Anderhub S, Maier B (2012) Chap. 17. Mechanisms and consequences of centrosome clustering in cancer cells. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S, Wagner L, Ho AD, Salisbury JL, Boutros M, Krämer A (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2(33ra38):1–11

    Google Scholar 

  • Li Y, Lu W, Chen D, Boohaker RJ, Zhai L, Padmalayam I, Wennerberg K, Xu B, Zhang W (2015) KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biol Ther 16:1316–1322

    Article  CAS  Google Scholar 

  • Ling H, Peng L, Seto E, Fukasawa K (2012) Suppression of centrosome duplication and amplification by deacetylases. Cell Cycle 11:3779–3791

    Article  CAS  Google Scholar 

  • Marchetti F, Mailhes JB, Bairnsfather L, Nandy I, London SN (1996) Dose-response study and threshold estimation of griseofulvin induced aneuploidy during female mouse meiosis I and II. Mutagenesis 11:195–200

    Article  CAS  Google Scholar 

  • Mittal K, Choi DH, Klimov S, Pawar S, Kaur R, Mitra AK, Gupta MV, Sams R, Cantuaria G, Rida PCG, Aneja R (2016) A centrosome clustering protein, KIFC1, predicts aggressive disease course in serous ovarian adenocarcinomas. J Ovar Res 9(17):1–11

    Google Scholar 

  • Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825

    Article  CAS  Google Scholar 

  • Pihan GA et al (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58:3974–3985

    CAS  Google Scholar 

  • Pihan GA, Wallace J, Zhou Y, Doxsey SJ (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63:1398–1404

    CAS  Google Scholar 

  • Rebacz B, Larsen TO, Clausen MH, Ronnest MH, Loffler H, Ho AD, Krämer A (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350

    Article  CAS  Google Scholar 

  • Schatten H (1977) Untersuchungen über die Wirkung von Griseofulvin in Seeigeleiern und in Mammalierzellen. Universität Heidelberg; (effects of griseofulvin on sea urchin eggs and on mammalian cells. University of Heidelberg)

    Google Scholar 

  • Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    Article  CAS  Google Scholar 

  • Schatten H (2013) Chapter 12. The impact of centrosome abnormalities on breast cancer development and progression with a focus on targeting centrosomes for breast cancer therapy. In: Cell and molecular biology of breast cancer. Heide Schatten, Springer Science and Business Media, LLC: Berlin

    Chapter  Google Scholar 

  • Schatten H, Ripple M (2018) The impact of centrosome pathologies on prostate cancer development and progression. In: Schatten H (ed) Cell and molecular biology of prostate cancer: updates, insights and new frontiers. Springer, New York

    Chapter  Google Scholar 

  • Schatten H, Sun Q-Y (2012) Chap. 4. Nuclear-centrosome relationships during fertilization, cell division, embryo development, and in somatic cell nuclear transfer (SCNT) embryos. In: Schatten H (ed) The centrosome. Springer Science and Business Media, LLC, Berlin

    Chapter  Google Scholar 

  • Schatten H, Sun Q-Y (2015) Centrosome-microtubule interactions in health, disease, and disorders. In: Schatten H (ed) The cytoskeleton in health and disease. Springer, New York

    Chapter  Google Scholar 

  • Schatten H, Sun QY (2018) Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 150:303–325. https://doi.org/10.1007/s00418-018-1698-1

    Article  CAS  Google Scholar 

  • Schatten H, Schatten G, Petzelt C, Mazia D (1982) Effects of griseofulvin on fertilization and early development of sea urchins. Independence of DNA synthesis, chromosome condensation, and cytokinesis cycles from microtubule-mediated events. Eur J Cell Biol 27:74–87

    CAS  Google Scholar 

  • Scheer U (2014) Historical roots of centrosome research: Discovery of Boveri’s microscope slides in Würzburg. Philos Trans R Soc Lond B Biol Sci 369:20130469

    Article  Google Scholar 

  • Schoffski P (2009) Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 14:559–570

    Article  CAS  Google Scholar 

  • Sun QY, Schatten H (2006) Multiple roles of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front Biosci 11:1137–1146

    Article  CAS  Google Scholar 

  • Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho S-M (2014) Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One 9(3):e90332. https://doi.org/10.1371/journal.pone.0090332

    Article  CAS  Google Scholar 

  • Uen YH, Liu DZ, Weng MS, Ho YS, Lin SY (2007) NF-kappaB pathway is involved in griseofulvin-induced G2/M arrest and apoptosis in HL-60 cells. J Cell Biochem 101(5):1165–1175

    Article  CAS  Google Scholar 

  • Wehland J, Herzog W, Weber K (1977) Interaction of griseofulvin with microtubules, microtubule protein and tubulin. J Mol Biol 111:329–342

    Article  CAS  Google Scholar 

  • Xiao Y-X, Yang W-X (2016) KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget 7(30):48656–48670

    Article  Google Scholar 

  • Xu X et al (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395

    Article  CAS  Google Scholar 

  • Yamauchi Y, Kiriyama K, Kimura H, Nishiyama Y (2008) Herpes simplex virus induces extensive modification and dynamic relocalisation of the nuclear mitotic apparatus (NuMA) protein in interphase cells. J Cell Sci 121:2087–2096

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H. (2022). Centrosome Dysfunctions in Cancer. In: The Centrosome and its Functions and Dysfunctions. Advances in Anatomy, Embryology and Cell Biology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-031-20848-5_4

Download citation

Publish with us

Policies and ethics