Skip to main content

Non-centrosomal Microtubule Organization in Plant Cells

  • Chapter
  • First Online:
The Centrosome and its Functions and Dysfunctions

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 235))

  • 271 Accesses

Abstract

It is well known that plant cells do not contain typical centrosomes and the question has been asked how plant cells undergo mitosis and cell division in the absence of mechanisms that are well known for eukaryotic animal cells. Several papers are now available to address this question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL, Arellano-Santoyo H, Gonen T, Ranish JA, Asbury CL, Biggins S (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:576–579

    Article  CAS  Google Scholar 

  • Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E (2010) The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467:805–810

    Article  CAS  Google Scholar 

  • Ambrose JC, Cyr R (2008) Mitotic spindle organization by the preprophase band. Mol Plant 1:950–960

    Article  CAS  Google Scholar 

  • Binarova P, Cenklova V, Hause B, Kubatova E, Lysak M, Dolezel J, Bogre L, Draber P (2000) Nuclear gammatubulin during acentriolar plant mitosis. Plant Cell 12:433–442

    Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–181

    Article  CAS  Google Scholar 

  • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997

    Article  CAS  Google Scholar 

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    Article  CAS  Google Scholar 

  • De Mey J, Lambert A, Bajer A, Moeremans M, Brabander M (1982) Visualization of microtubules in interphase and mitotic plant cells of haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci USA 79:1898–1902. https://doi.org/10.1073/pnas.79.6.1898

    Article  Google Scholar 

  • Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A (2005) Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. Plant Cell 17:836–848

    Article  CAS  Google Scholar 

  • Drykova D, Cenklova V, Sulimenko V, Volc J, Draber P, Binarova P (2003) Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes. Plant Cell 15:465–480

    Google Scholar 

  • Du Y, Dawe RK (2007) Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res 15:767–775

    Article  CAS  Google Scholar 

  • Garrett S, Auer K, Compton DA, Kapoor TM (2002) hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr Biol 12:2055–2059

    Article  CAS  Google Scholar 

  • Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Sillje H, Karsenti E, Mattaj IW, Vernos I (2002) Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 4:871–879

    Article  CAS  Google Scholar 

  • Guarguaglini G, Renzi L, D'Ottavio F, Di Fiore B, Casenghi M, Cundari E, Lavia P (2000) Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ 11:455–465

    CAS  Google Scholar 

  • Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–442

    Article  CAS  Google Scholar 

  • Horio T, Oakley BR (2003) Expression of Arabidopsis gamma-tubulin in fission yeast reveals conserved and novel functions of gamma-tubulin. Plant Physiol 133:1926–1934

    Google Scholar 

  • Hotta T, Haraguchi T, Mizuno K (2007) A novel function of plant histone H1: microtubule nucleation and continuous plus end association. Cell Struct Funct 32:79–87

    Article  CAS  Google Scholar 

  • Hotta T, Kong Z, Kimmy Ho C-M, Tracy Zeng CJ, Horio T, Fong S, Vuong T, Julie Lee Y-R, Liu B (2012) Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. The Plant Cell 24:1494–1509

    Article  CAS  Google Scholar 

  • Kalab P, Pu RT, Dasso M (1999) The ran GTPase regulates mitotic spindle assembly. Curr Biol 9:481–484

    Article  CAS  Google Scholar 

  • Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294:543–547

    Article  CAS  Google Scholar 

  • Khodjakov A, Copenagle L, Gordon MB, Compton DA, Kapoor TM (2003) Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J Cell Biol 160:671–683

    Article  CAS  Google Scholar 

  • Kosetsu K, Murata T, Yamada M, Nishina M, Boruc J, Hasebe M, Van Damme D, Goshima G (2017) Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants. Proc Natl Acad Sci U S A 114(42):E8847–E8854. www.pnas.org/cgi/doi/10.1073/pnas.1713925114

  • Li X, Dawe RK (2009) Fused sister kinetochores initiate the reductional division in meiosis I. Nat Cell Biol 11:1103–1108

    Article  CAS  Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    Article  CAS  Google Scholar 

  • Ma L, Hong Z, Zhang Z (2007) Perinuclear and nuclear envelope localizations of Arabidopsis Ran proteins. Plant Cell Rep 26:1373–1382

    Article  CAS  Google Scholar 

  • Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840

    Article  CAS  Google Scholar 

  • Maskell DP, Hu XW, Singleton MR (2010) Molecular architecture and assembly of the yeast kinetochore MIND complex. J Cell Biol 190:823–834

    Article  CAS  Google Scholar 

  • Meraldi P, Mcainsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23

    Article  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubuledependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7:961–968

    Google Scholar 

  • Nakayama T, Ishii T, Hotta T, Mizuno K (2008) Radial microtubule organization by histone H1 on nuclei of cultured tobacco BY-2 cells. J Biol Chem 283:16632–16640

    Article  CAS  Google Scholar 

  • O’Connell CB, Lončarek J, Kaláb P, Khodjakov A (2009) Relative contributions of chromatin and kinetochores to mitotic spindle assembly. J Cell Biol 187(1):43–51

    Google Scholar 

  • Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Selforganization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284:1356–1358

    Article  CAS  Google Scholar 

  • Palevitz BA (1993) Morphological plasticity of the mitotic apparatus in plants and its developmental consequences. Plant Cell 5:1001–1009

    Article  Google Scholar 

  • Panteris E, Apostolakos P, Gräf R, Galatis B (2000) Gamma-tubulin colocalizes with microtubule arrays and tubulin paracrystals in dividing vegetative cells of higher plants. Protoplasma 210:179–187

    Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard J-L, Schmit A-C, Guerche P, Boucheza D (2006) γ-Tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18(6):1412–1425

    Article  CAS  Google Scholar 

  • Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S, Cittaro D, Monzani S, Massimiliano L, Keller J, Tarricone A, Maiolica A, Stark H, Musacchio A (2010) The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 190:835–852

    Article  CAS  Google Scholar 

  • Powers AF, Franck AD, Gestaut DR, Cooper J, Gracyzk B, Wei RR, Wordeman L, Davis TN, Asbury CL (2009) The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136:865–875

    Article  CAS  Google Scholar 

  • Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Keiko Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C (2021) Fifteen compelling open questions in plant cell biology. Plant Cell 00:1–31

    Google Scholar 

  • Schaefer E, Belcram K, Uyttewaal M, Duroc Y, Goussot M, Legland D, Laruelle E, de Tauzia-Moreau M-L, Martine Pastuglia M, David Bouchez D (2017) The preprophase band of microtubules controls the robustness of division orientation in plants. Science 356(6334):186–189

    Article  CAS  Google Scholar 

  • Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa K-I, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyukia Y (2004) γ-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    Article  CAS  Google Scholar 

  • Stoppin V, Vantard M, Schmit AC, Lambert AM (1994) Isolated plant nuclei nucleate microtubule assembly: The nuclear surface in higher plants has centrosome-like activity. Plant Cell 6:1099–1106

    Article  CAS  Google Scholar 

  • Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–1362

    Article  CAS  Google Scholar 

  • Yoneda A, Akatsuka M, Hoshino H, Kumagai F, Hasezawa S (2005) Decision of spindle poles and division plane by double preprophase bands in a BY-2 cell line expressing GFP-tubulin. Plant Cell Physiol 46:531–538

    Article  CAS  Google Scholar 

  • Zhang H, Dawe RK (2011) Mechanisms of plant spindle formation. Chromosome Res 19:335–344. https://doi.org/10.1007/s10577-011-9190-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H. (2022). Non-centrosomal Microtubule Organization in Plant Cells. In: The Centrosome and its Functions and Dysfunctions. Advances in Anatomy, Embryology and Cell Biology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-031-20848-5_10

Download citation

Publish with us

Policies and ethics