Skip to main content

Cell and Molecular Biology of Centrosome Structure and Function

  • Chapter
  • First Online:
The Centrosome and its Functions and Dysfunctions

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 235))

Abstract

The centrosome field has seen enormous progress during the past few decades which spans the large areas of cell biology with new information on cell cycle controls and cellular health; immunology with centrosomes being essential for the formation of the immunological synapse; neurobiology with new insights into centrosome dysfunctions leading to disorders and disease; stem cell biology with fate-determining distribution of centrosomal material during asymmetric cell division; cancer biology with huge insights into the role of centrosomes in disease initiation, progression, and manifestation; reproductive biology with essential centrosome functions in oocytes, during fertilization and embryo development in which centrosome dysfunctions can be related back to abnormal centrosomal material in the meiotic spindle of oocytes; and several others that will be highlighted in the specific chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    Article  CAS  Google Scholar 

  • Arquint C, Gabryjonczyk AM, Nigg EA (2014) Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 369:20130464

    Article  Google Scholar 

  • Badano JL, Teslovich TM, Katsanis N (2005) The centrosome in human genetic disease. Nat Rev Genet 6:194–207

    Article  CAS  Google Scholar 

  • Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 171:27–33

    Article  CAS  Google Scholar 

  • Bartolini F, Gundersen GG (2006) Generation of noncentrosomal microtubule arrays. J. Cell Sci 119:4155–4163

    Article  CAS  Google Scholar 

  • Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nature Rev Mol Cell Biol 6:476–486

    Article  CAS  Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34

    Article  CAS  Google Scholar 

  • Bornens M (2012) The centrosome in cells and organisms. Science 335:422–426

    Article  CAS  Google Scholar 

  • Boveri T (1901) Zellen-Studien: Über die Natur der Centrosomen, vol 28. Fisher Z Med Naturw, Jena, Germany, pp 1–220

    Google Scholar 

  • Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. G. Fischer, Jena, Germany

    Google Scholar 

  • Budhu AS, Wang XW (2005) Loading and unloading: orchestrating centrosome duplication and spindle assembly by Ran/Crm1. Cell Cycle 4:1510–1514

    Article  CAS  Google Scholar 

  • Delattre M, Gonczy P (2004) The arithmetic of centrosome biogenesis. J Cell Sci 117:1619–1630

    Article  CAS  Google Scholar 

  • Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118:1565–1575. https://doi.org/10.1242/jcs.02302

    Article  CAS  Google Scholar 

  • Dictenberg J, Zimmerman W, Sparks C, Young A, Vidair C, Zheng Y, Carrington W, Fay F, Doxsey SJ (1998) Pericentrin and gamma tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 141:163–174

    Article  CAS  Google Scholar 

  • Doxsey SJ, Stein P, Evans L, Calarco P, Kirschner M (1994) Pericentrin, a highly conserved protein of centrosomes involved in microtubule organization. Cell 76:639–650

    Article  CAS  Google Scholar 

  • Doxsey S (2001) Re-evaluating centrosome function. Nature Rev Mol Cell Biol 2:688–698

    Article  CAS  Google Scholar 

  • Dutcher SK (2003) Long-lost relatives reappear: identification of new members of the tubulin superfamily. Curr Opin Microbiol 6:634–640

    Article  CAS  Google Scholar 

  • Fisk HA (2012) Chap. 8. Many pathways to destruction: the centrosome and its control by and role in regulated proteolysis. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Flemming W (1875) Studien über die Entwicklungsgeschichte der Najaden. Sitzungsber Akad Wissensch Wien 71:81–147

    Google Scholar 

  • Flemming W (1891) Verhandlungen der anatomischen Gesellschaft, Jahrg. 6, München (found as item 60 vol II in Collected Papers of Walther Flemming in M.B.L. Library, reprint collection)

    Google Scholar 

  • Fu J, Glover DM (2012) Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2:120104

    Google Scholar 

  • Fürst E (1898) Ueber Centrosomen bei Ascaris megalocephala. Arch Mikr Anat 52:97–133. https://doi.org/10.1007/BF02976211

    Article  Google Scholar 

  • Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep (6):524–529

    Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138

    Google Scholar 

  • Gopalakrishnan J et al (2011) Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat Commun 2:359

    Article  Google Scholar 

  • Habermann K, Lange BM (2012) New insights into subcomplex assembly and modifications of centrosomal proteins. Cell Div 7:17

    Article  CAS  Google Scholar 

  • Heidenhain M (1894) Neue Untersuchungen u¨ber die Centralko¨rper und ihre Beziehungen zum Kern- und Zellenprotoplasma. Arch Mikr Anat 43:423–758. https://doi.org/10.1007/BF02933880

    Article  Google Scholar 

  • Hinchcliffe EH, Sluder G (2001) “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15:1167–1181

    Article  CAS  Google Scholar 

  • Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234

    Article  CAS  Google Scholar 

  • Joshi HC, Zhou J (2001) Gamma tubulin and microtubule nucleation in mammalian cells. Methods in Cell Biology 67:179–193

    Article  CAS  Google Scholar 

  • Kallenbach RJ (1982) ‘De novo’ centrioles originate at sites associated with annulate lamellae in sea-urchin eggs. Biosci Rep 2:959–966

    Google Scholar 

  • Kobayashi T, Dynlacht BD (2011) Regulating the transition from centriole to basal body. J Cell Biol 193:435–444

    Article  CAS  Google Scholar 

  • Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14(11):1148–1158

    Google Scholar 

  • Levy YY, Lai EY, Remillard SP, Heintzelman MB, Fulton C (1996) Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil Cytoskeleton 33:298–323

    Article  CAS  Google Scholar 

  • Lüders J (2012) The amorphous pericentriolar cloud takes shape. Nat Cell Biol 14(11):1126–1128

    Google Scholar 

  • Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276:20774–20780

    Article  CAS  Google Scholar 

  • Machida YJ, Hamlin JL, Dutta A (2005) A. Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24

    Article  CAS  Google Scholar 

  • Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Repro 72:2–13

    Article  CAS  Google Scholar 

  • Mennella V, Agard DA, Huang B, Laurence Pelletier L (2013) Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 24(3):188–197

    Article  Google Scholar 

  • Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113:3013–3023

    Article  CAS  Google Scholar 

  • Moritz M, Zheng Y, Alberts BM, Oegema K (1998) Recruitment of the g-tubulin ring complex to Drosophila salt stripped centrosomes. J Cell Biol 142:775e786

    Article  Google Scholar 

  • Nigg EA, Stearns T (2011) The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13(10):1154–1160

    Google Scholar 

  • Paintrand et al (1992) Centrosome organization their sensitivity and centriole architecture: to divalent cations. J Struct Biol 108:107–128

    Article  CAS  Google Scholar 

  • Prosser SL, Fry AM (2012) Chap. 9. Regulation of the centrosome cycle by protein degradation. In: Schatten H (ed) The centrosome. Springer, New York

    Google Scholar 

  • Riparbelli MG, Callaini G (2003) Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev Biol 260:298–313

    Article  CAS  Google Scholar 

  • Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7:39–45

    Article  CAS  Google Scholar 

  • Salisbury JL (2004) Centrosomes: Sfi1p and centrin unravel a structural riddle. Curr Biol 14:R27–R29

    Article  CAS  Google Scholar 

  • Salisbury JL, Suino KM, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:1287–1292

    Article  CAS  Google Scholar 

  • Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    Article  CAS  Google Scholar 

  • Schatten H (2013) Chapter 12. The impact of centrosome abnormalities on breast cancer development and progression with a focus on targeting centrosomes for breast cancer therapy. In: Cell and molecular biology of breast cancer. Heide Schatten, Springer Science and Business Media, LLC: Berlin

    Chapter  Google Scholar 

  • Schatten H, Sun QY (2010) The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin Cell Dev Biol 21:174–184

    Article  Google Scholar 

  • Schatten H, Sun QY (2011a) Centrosome dynamics during meiotic spindle formation in oocyte maturation. Mol Reprod Dev 78:757–768

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2011b) New insights into the role of centrosomes in mammalian fertilisation and implications for ART. Reproduction 142:793–801

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2011c) The significant role of centrosomes in stem cell division and differentiation. Microsc Microanal 17(4):506–512

    Article  CAS  Google Scholar 

  • Schatten H, Sun QY (2015a) Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod Fertil Dev 27(6):934–943. https://doi.org/10.1071/RD14493

    Article  CAS  Google Scholar 

  • Schatten H, Sun Q-Y (2015b) Centrosome-microtubule interactions in health, disease, and disorders. In: Schatten H (ed) The cytoskeleton in health and disease. Springer, New York

    Chapter  Google Scholar 

  • Schatten H, Sun QY (2018) Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 150:303–325. https://doi.org/10.1007/s00418-018-1698-1

    Article  CAS  Google Scholar 

  • Schatten H, Walter M, Mazia D, Biessmann H, Paweletz N, Coffe G, Schatten G (1987) Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Proc Natl Acad Sci USA 84:8488–8492

    Article  CAS  Google Scholar 

  • Schatten H, Walter M, Biessmann H, Schatten G (1992) Activation of maternal centrosomes in unfertilized sea urchin eggs. Cell Motil Cytoskel 23:61–70

    Article  CAS  Google Scholar 

  • Scheer U (2014) Historical roots of centrosome research: Discovery of Boveri’s microscope slides in Würzburg. Philos Trans R Soc Lond B Biol Sci 369:20130469

    Article  Google Scholar 

  • Schnackenberg BJ, Palazzo RE (1999) Identification and function of the centrosome centromatrix. Biol Cell 91(6):429–438

    Article  CAS  Google Scholar 

  • Schnackenberg BJ, Hull DR, Balczon RD, Palazzo RE (2000) Reconstitution of microtubule nucleation potential in centrosomes isolated from Spisula solidissima oocytes. J Cell Sci 113(Pt 6):943–953

    Article  CAS  Google Scholar 

  • Sluder G (2004) In: Nigg EA (ed) Centrosomes in development and disease. Wiley-Vch, Weinheim, pp 167–189

    Google Scholar 

  • Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1:965–976

    Google Scholar 

  • Stinchcombe JC, Griffiths GM (2014) Communication, the centrosome and the immunological synapse. Philos Trans R Soc Lond B Biol Sci 369:20130463

    Article  Google Scholar 

  • Tang N, Marshall WF (2012) Centrosome positioning in vertebrate development. J Cell Sci 125:4951–4961

    Article  CAS  Google Scholar 

  • Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951

    Article  CAS  Google Scholar 

  • Van Beneden E (1876) Contribution al’histoire de la vesiculaire germinative et du premier embryonnaire. Bull Acad R Belg 42:35–97

    Google Scholar 

  • Vidwans SJ, Wong ML, O'Farrell PH (1999) Mitotic regulators govern progress through steps in the centrosome duplication cycle. J Cell Biol 147:1371–1378

    Article  CAS  Google Scholar 

  • Wen F, Armstrong N, Hou W, Cruz-Cosme R, Akello Obwolo L, Ishizuka K, Ullah H, Luo M-H, Sawa A, Tang Q (2019) Zika virus increases mind bomb 1 levels, causing degradation of pericentriolar material 1 (PCM1) and dispersion of PCM1-containing granules from the centrosome. J Biol Chem 294(49):18742–18755

    Google Scholar 

  • Wilkinson CJ, Andersen JS, Mann M, Nigg EA (2004) A proteomic approach to the inventory of the human centrosome. In: Nigg E (ed) Centrosomes in development and disease. Wiley, Weinheim, pp 125–142

    Google Scholar 

  • Woodruff JB, Wueseke O, Hyman AA (2014) Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 369:20130459

    Article  Google Scholar 

  • Woodruff JB (2021) The material state of centrosomes: lattice, liquid, or gel? Curr Opin Struct Biol 66:139–147

    Google Scholar 

  • Wueseke O, Bunkenborg J, Hein MY, Zinke A, Viscardi V, Woodruff JB et al (2014) The Caenorhabditis elegans pericentriolar material components SPD-2 and SPD-5 are monomeric in the cytoplasm before incorporation into the PCM matrix. Mol Biol Cell 25:2984–2992

    Article  Google Scholar 

  • Yang J, Adamian M, Li T (2006) Rootletin interacts with c-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 17:1033–1040

    Article  CAS  Google Scholar 

  • Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey S (2000) Cytoplasmic dynein-mediated assembly of pericentrin and γ tubulin onto centrosomes. Mol Biol Cell 11:2047–2056

    Article  CAS  Google Scholar 

  • Zou C, Li J, Bai Y, Gunning WT, Wazer DE, Band V, Gao Q (2005) Centrobin: a novel daughter centrioleassociated protein that is required for centriole duplication. J Cell Biol 171(3):437–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H. (2022). Cell and Molecular Biology of Centrosome Structure and Function. In: The Centrosome and its Functions and Dysfunctions. Advances in Anatomy, Embryology and Cell Biology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-031-20848-5_1

Download citation

Publish with us

Policies and ethics