Skip to main content

Adsorptive Techniques for the Removal of Pharmaceutically Active Compounds—Materials and Mechanisms

  • Chapter
  • First Online:
Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Abstract

There has been an increasing rate in the release of pharmaceutically active compounds (PhACs) used to cure humans and animals into water bodies, causing various environmental and health issues. Among several methods developed for the removal of these compounds, adsorption has received particular attention due to its efficiency, cost-effectiveness, and ease of implementation. This chapter aims to discuss the main mechanisms involved in the adsorption of PhACs while examining the latest observations in the literature regarding the selection of sustainable materials for the efficient adsorption and removal of these compounds from polluted (waste)waters. As a point of high importance, the reusability of the adsorbents after being used for these processes is also discussed, and recommendations for future studies are presented. The chapter ends with further reading suggestions to support the discussions provided in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Main categories of CECs include pharmaceuticals and personal care products, endocrine-disrupting chemicals, disinfection by-products, flame retardants, microplastics, and nanomaterials [4, 5].

  2. 2.

    Using conventional ion exchange resins such as MIEX®, Purolite A520E, Dowex 22, IRA938, IRA958, IRA458, IRA402, and Oasis MAX.

  3. 3.

    Fixed-bed adsorption is generally performed in various steps including saturation, regeneration, and washing [6668].

  4. 4.

    Revealed by the kinetic data which were better fitted to the pseudosecond-order equation than to the pseudofirst-order equation, as an indication of the chemical adsorption.

References

  1. Kumar A et al (2022) Environmental pollution remediation via photocatalytic degradation of sulfamethoxazole from waste water using sustainable Ag2S/Bi2S3/g-C3N4 nano-hybrids. Earth Syst Environ 6(1):141–156. https://doi.org/10.1007/s41748-021-00223-8

    Article  MathSciNet  Google Scholar 

  2. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. https://doi.org/10.1016/j.envint.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  3. Kim S et al (2018) Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem Eng J 335(November 2017):896–914. https://doi.org/10.1016/j.cej.2017.11.044

    Article  CAS  Google Scholar 

  4. Shi Q et al (2022) Contaminants of emerging concerns in recycled water: fate and risks in agroecosystems. Sci Total Environ 814:152527. https://doi.org/10.1016/j.scitotenv.2021.152527

    Article  CAS  PubMed  Google Scholar 

  5. Lee BCY et al (2021) Emerging contaminants: an overview of recent trends for their treatment and management using light-driven processes. Water (Switzerland) 13:2340. https://doi.org/10.3390/w13172340

    Article  CAS  Google Scholar 

  6. Kuroda K et al (2021) Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Sci Total Environ 776:145740. https://doi.org/10.1016/j.scitotenv.2021.145740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benjelloun M et al (2021) Recent advances in adsorption kinetic models: their application to dye types. Arab J Chem 14(4):103031. https://doi.org/10.1016/j.arabjc.2021.103031

  8. Da’na E (2017) Adsorption of heavy metals on functionalized-mesoporous silica: a review. Microporous Mesoporous Mater 247:145–157. https://doi.org/10.1016/j.micromeso.2017.03.050

    Article  CAS  Google Scholar 

  9. Ersan G et al (2017) Adsorption of organic contaminants by graphene nanosheets: a review. Water Res 126:385–398. https://doi.org/10.1016/j.watres.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  10. Carey DE, McNamara PJ, Zitomer DH (2015) Biochar from pyrolysis of biosolids for nutrient adsorption and turfgrass cultivation. Water Environ Res 87:2098–2106. https://doi.org/10.2175/106143015x14362865227391

    Article  CAS  PubMed  Google Scholar 

  11. Awad AM et al (2019) Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep Purif Technol 228:115719. https://doi.org/10.1016/j.seppur.2019.115719

    Article  CAS  Google Scholar 

  12. Tabana L et al (2020) Adsorption of phenol from waste water using calcined magnesium-zinc-aluminium layered double hydroxide clay. Sustainability 12:4273. https://doi.org/10.3390/su12104273

    Article  Google Scholar 

  13. Jain SN et al (2020) Batch and continuous studies for adsorption of anionic dye onto waste tea residue: kinetic, equilibrium, breakthrough and reusability studies. J Clean Prod 252:119778. https://doi.org/10.1016/j.jclepro.2019.119778

    Article  CAS  Google Scholar 

  14. Naushad M et al (2019) Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Mol Liq 293:111442. https://doi.org/10.1016/j.molliq.2019.111442

    Article  CAS  Google Scholar 

  15. Kamali M et al (2020) Optimization of kraft black liquor treatment using ultrasonically synthesized mesoporous tenorite nanomaterials assisted by Taguchi design. Chem Eng J 401:126040. https://doi.org/10.1016/j.cej.2020.126040

    Article  CAS  Google Scholar 

  16. Luxbacher T (2012) Electrokinetic properties of natural fibres, handbook of natural fibres. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095510.1.185

  17. Feng J et al (2015) Effect of hydroxyl group of carboxylic acids on the adsorption of acid red G and methylene blue on TiO2. Chem Eng J 269:316–322. https://doi.org/10.1016/j.cej.2015.01.109

    Article  CAS  Google Scholar 

  18. Bernal V, Giraldo L, Moreno-Piraján JC (2020) Adsorption of pharmaceutical aromatic pollutants on heat-treated activated carbons: effect of carbonaceous structure and the adsorbent-adsorbate interactions. ACS Omega 5:15247–15256. https://doi.org/10.1021/acsomega.0c01288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cong Q, Yuan X, Qu J (2013) A review on the removal of antibiotics by carbon nanotubes. Water Sci Technol 68:1679–1687. https://doi.org/10.2166/wst.2013.420

    Article  CAS  PubMed  Google Scholar 

  20. Jiang M et al (2015) Adsorption of three pharmaceuticals on two magnetic ion-exchange resins. J Environ Sci (China) 31:226–234. https://doi.org/10.1016/j.jes.2014.09.035

    Article  CAS  PubMed  Google Scholar 

  21. Cao LQ et al (2004) Adsorption of Zn (II) ion onto crosslinked amphoteric starch in aqueous solutions. J Polym Res 11:105–108. https://doi.org/10.1023/B:JPOL.0000031066.67853.28

    Article  CAS  Google Scholar 

  22. Laske C et al (2008) Decreased plasma and cerebrospinal fluid levels of stem cell factor in patients with early Alzheimer’s disease. J Alzheimer’s Disease 15:451–460. https://doi.org/10.3233/JAD-2008-15311

    Article  CAS  Google Scholar 

  23. Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187:79–88. https://doi.org/10.1016/j.cej.2012.01.089

    Article  CAS  Google Scholar 

  24. Ain QU et al (2020) Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. J Hazard Mater 397:122758. https://doi.org/10.1016/j.jhazmat.2020.122758

    Article  CAS  PubMed  Google Scholar 

  25. Song JY, Jhung SH (2017) Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem Eng J 322:366–374. https://doi.org/10.1016/j.cej.2017.04.036

    Article  CAS  Google Scholar 

  26. Shieh FK et al (2013) A bioconjugated design for amino acid-modified mesoporous silicas as effective adsorbents for toxic chemicals. J Hazard Mater 260:1083–1091. https://doi.org/10.1016/j.jhazmat.2013.06.066

    Article  CAS  PubMed  Google Scholar 

  27. Zhao J, Dai Y (2022) Tetracycline adsorption mechanisms by NaOH-modified biochar derived from waste Auricularia auricula dregs. Environ Sci Pollut Res 29:9142–9152. https://doi.org/10.1007/s11356-021-16329-5

    Article  CAS  Google Scholar 

  28. Arunan E et al (2011) Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem 83:1637–1641. https://doi.org/10.1351/PAC-REC-10-01-02

    Article  CAS  Google Scholar 

  29. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647. https://doi.org/10.1038/nature04162

    Article  CAS  PubMed  Google Scholar 

  30. Shin J et al (2021) Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: contribution of hydrophobic and π-π interactions. Environ Pollut 270:116244. https://doi.org/10.1016/j.envpol.2020.116244

    Article  CAS  PubMed  Google Scholar 

  31. Crini G et al (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  CAS  Google Scholar 

  32. Tan TH et al (2020) Current development of geopolymer as alternative adsorbent for heavy metal removal. Environ Technol Innov 18:100684. https://doi.org/10.1016/j.eti.2020.100684

    Article  Google Scholar 

  33. Yang P et al (2020) Porous carbons derived from sustainable biomass via a facile one-step synthesis strategy as efficient CO2 adsorbents. Ind Eng Chem Res 59:6194–6201. https://doi.org/10.1021/acs.iecr.0c00073

    Article  CAS  Google Scholar 

  34. Veclani D, Tolazzi M, Melchior A (2020) Molecular interpretation of pharmaceuticals’ adsorption on carbon nanomaterials: theory meets experiments. Processes 8:1–39. https://doi.org/10.3390/PR8060642

    Article  Google Scholar 

  35. Kamali M et al (2021) Biochar in water and wastewater treatment—a sustainability assessment. Chem Eng J 420:129946. https://doi.org/10.1016/j.cej.2021.129946

    Article  CAS  Google Scholar 

  36. Pauletto PS, Bandosz TJ (2022) Activated carbon versus metal-organic frameworks: a review of their PFAS adsorption performance. J Hazard Mater 425:127810. https://doi.org/10.1016/j.jhazmat.2021.127810

    Article  CAS  PubMed  Google Scholar 

  37. Moussavi G et al (2018) The catalytic destruction of antibiotic tetracycline by sulfur-doped manganese oxide (S–MgO) nanoparticles. J Environ Manage 210:131–138. https://doi.org/10.1016/j.jenvman.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  38. De Andrade JR et al (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57:3103–3127. https://doi.org/10.1021/acs.iecr.7b05137

    Article  CAS  Google Scholar 

  39. Leng L et al (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763:144204. https://doi.org/10.1016/j.scitotenv.2020.144204

    Article  CAS  PubMed  Google Scholar 

  40. Lu H et al (2013) Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J Anal Appl Pyrol 102:137–143. https://doi.org/10.1016/j.jaap.2013.03.004

    Article  CAS  Google Scholar 

  41. Azargohar R, Dalai AK (2008) Steam and KOH activation of biochar: experimental and modeling studies. Microporous Mesoporous Mater 110:413–421. https://doi.org/10.1016/j.micromeso.2007.06.047

    Article  CAS  Google Scholar 

  42. Décima MA et al (2021) A review on the removal of carbamazepine from aqueous solution by using activated carbon and biochar. Sustainability (Switzerland) 13:11760. https://doi.org/10.3390/su132111760

    Article  CAS  Google Scholar 

  43. Ndoun MC et al (2021) Adsorption of pharmaceuticals from aqueous solutions using biochar derived from cotton gin waste and guayule bagasse. Biochar 3(1):89–104. https://doi.org/10.1007/s42773-020-00070-2

    Article  CAS  Google Scholar 

  44. Liu H, Xu G, Li G (2021) Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. J Colloid Interface Sci 587:271–278. https://doi.org/10.1016/j.jcis.2020.12.014

    Article  CAS  PubMed  Google Scholar 

  45. Liu Z et al (2019) Nanoscale chemical mapping of oxygen functional groups on graphene oxide using atomic force microscopy-coupled infrared spectroscopy. J Colloid Interface Sci 556:458–465. https://doi.org/10.1016/j.jcis.2019.08.089

    Article  CAS  PubMed  Google Scholar 

  46. Şinoforoǧlu M et al (2013) Graphene oxide sheets as a template for dye assembly: graphene oxide sheets induce H-aggregates of pyronin (Y) dye. RSC Adv 3:11832–11838. https://doi.org/10.1039/c3ra40531a

    Article  CAS  Google Scholar 

  47. Chen H, Gao B, Li H (2015) Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater 282:201–207. https://doi.org/10.1016/j.jhazmat.2014.03.063

  48. Yang ST et al (2011) Removal of carbon nanotubes from aqueous environment with filter paper. Chemosphere 82:621–626. https://doi.org/10.1016/j.chemosphere.2010.10.048

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y et al (2012) Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf, B 97:62–69. https://doi.org/10.1016/j.colsurfb.2012.04.013

    Article  CAS  Google Scholar 

  50. Ateia M et al (2017) Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0180636

    Article  CAS  Google Scholar 

  51. Hildago-Oporto P et al (2019) Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation. J Environ Manage 244:83–91. https://doi.org/10.1016/j.jenvman.2019.03.082

    Article  CAS  PubMed  Google Scholar 

  52. Hu K et al (2020) Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin. J Clean Prod 253:120055. https://doi.org/10.1016/j.jclepro.2020.120055

    Article  CAS  Google Scholar 

  53. Shen M et al (2021) gCN-P: a coupled g-C3N4/persulfate system for photocatalytic degradation of organic pollutants under simulated sunlight. Environ Sci Pollut Res (0123456789). https://doi.org/10.1007/s11356-021-17540-0

  54. Yin S et al (2015) ‘Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal Sci Technol Royal Soc Chem 5:5048–5061. https://doi.org/10.1039/c5cy00938c

    Article  CAS  Google Scholar 

  55. Zhang S et al (2019) Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal Today 335:65–77. https://doi.org/10.1016/j.cattod.2018.09.013

    Article  CAS  Google Scholar 

  56. Abd El-Halim EH, El-Gayar DA, Farag HA (2020) Treatment of wastewater by ion exchange resin using a pulsating disc. Desalin Water Treat 193:133–141. https://doi.org/10.5004/dwt.2020.25689

    Article  CAS  Google Scholar 

  57. Sica M et al (2011) Kinetic study of nitrite removal from municipal wastewater using ion exchange resins. Adv Mater Res 287–290:1513–1516. https://doi.org/10.4028/www.scientific.net/AMR.287-290.1513

    Article  CAS  Google Scholar 

  58. Zhu C et al (2017) Mechanisms of phosphorus removal from wastewater by ion exchange resin. Desalin Water Treat 79:347–355. https://doi.org/10.5004/dwt.2017.20890

    Article  CAS  Google Scholar 

  59. Kabay N et al (2004) Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins—II field test. Desalination 167:427–438. https://doi.org/10.1016/j.desal.2004.06.158

    Article  CAS  Google Scholar 

  60. Choi KJ, Son HJ, Kim SH (2007) Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic. Sci Total Environ 387:247–256. https://doi.org/10.1016/j.scitotenv.2007.07.024

    Article  CAS  PubMed  Google Scholar 

  61. Fernández AML, Rendueles M, Díaz M (2014) Competitive retention of sulfamethoxazole (SMX) and sulfamethazine (SMZ) from synthetic solutions in a strong anionic ion exchange resin. Solvent Extr Ion Exch 32:763–781. https://doi.org/10.1080/07366299.2014.940235

    Article  CAS  Google Scholar 

  62. Landry KA et al (2015) Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Water Res 68:510–521. https://doi.org/10.1016/j.watres.2014.09.056

    Article  CAS  PubMed  Google Scholar 

  63. Landry KA, Boyer TH (2013) Diclofenac removal in urine using strong-base anion exchange polymer resins. Water Res 47:6432–6444. https://doi.org/10.1016/j.watres.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  64. Robberson KA et al (2006) Adsorption of the quinolone antibiotic nalidixic acid onto anion-exchange and neutral polymers. Chemosphere 63:934–941. https://doi.org/10.1016/j.chemosphere.2005.09.047

    Article  CAS  PubMed  Google Scholar 

  65. Sun J et al (2015) Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins. Chemosphere 136:181–189. https://doi.org/10.1016/j.chemosphere.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  66. Bashiri H, Hassani Javanmardi A (2017) A new rate equation for desorption at the solid/solution interface. Chem Phys Lett 671:1–6. https://doi.org/10.1016/j.cplett.2017.01.007

    Article  CAS  Google Scholar 

  67. Costa C, Rodrigues A (1985) Design of cyclic fixed-bed adsorption processes Part II: Regeneration and cyclic operation. AIChE J 31:1655–1665. https://doi.org/10.1002/aic.690311009

    Article  CAS  Google Scholar 

  68. Nur T et al (2015) Nitrate removal using Purolite A520E ion exchange resin: batch and fixed-bed column adsorption modelling. Int J Environ Sci Technol 12:1311–1320. https://doi.org/10.1007/s13762-014-0510-6

    Article  CAS  Google Scholar 

  69. Staudt J et al (2020) Ciprofloxacin desorption from gel type ion exchange resin: desorption modeling in batch system and fixed bed column. Sep Purif Technol 230:115857. https://doi.org/10.1016/j.seppur.2019.115857

    Article  CAS  Google Scholar 

  70. Wang W et al (2016) Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins. Chemosphere 160:71–79. https://doi.org/10.1016/j.chemosphere.2016.06.073

    Article  CAS  PubMed  Google Scholar 

  71. Lonappan L et al (2018) Adsorption of diclofenac onto different biochar microparticles: dataset—characterization and dosage of biochar. Data Brief 16:460–465. https://doi.org/10.1016/j.dib.2017.10.041

    Article  PubMed  Google Scholar 

  72. Ahmed R, Hossain MA (2022) Optimization of a fixed bed column adsorption of fast green dye on used black tea leaves from aqueous solution. J Iran Chem Soc 19:381–391. https://doi.org/10.1007/s13738-021-02310-z

    Article  CAS  Google Scholar 

  73. El-Zahhar AA (2013) Sorption of cesium from aqueous solutions using polymer supported bentonite. J Radioanal Nucl Chem 295:1693–1701. https://doi.org/10.1007/s10967-012-2246-4

    Article  CAS  Google Scholar 

  74. Zhou L et al (2018) Adsorption of U(VI) onto the carboxymethylated chitosan/Na-bentonite membranes: kinetic, isothermic and thermodynamic studies. J Radioanal Nucl Chem 317:1377–1385. https://doi.org/10.1007/s10967-018-6009-8

    Article  CAS  Google Scholar 

  75. Maged A et al (2020) Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: characterization, sorption and mechanistic studies. J Hazard Mater 384:121320. https://doi.org/10.1016/j.jhazmat.2019.121320

    Article  CAS  PubMed  Google Scholar 

  76. Genç N, Dogan EC, Yurtsever M (2013) Bentonite for ciprofloxacin removal from aqueous solution. Water Sci Technol 68:848–855. https://doi.org/10.2166/wst.2013.313

    Article  CAS  PubMed  Google Scholar 

  77. Hubadillah SK et al (2018) Fabrications and applications of low cost ceramic membrane from kaolin: a comprehensive review. Ceram Int 44(5):4538–4560. https://doi.org/10.1016/j.ceramint.2017.12.215

    Article  CAS  Google Scholar 

  78. Zhang B et al (2019) Effect of kaolin content on the performances of kaolin-hybridized soybean meal-based adhesives for wood composites. Compos B Eng 173:106919. https://doi.org/10.1016/j.compositesb.2019.106919

    Article  CAS  Google Scholar 

  79. Antonelli R et al (2021) Fixed-bed adsorption of ciprofloxacin onto bentonite clay: characterization, mathematical modeling, and DFT-based calculations. Ind Eng Chem Res 60:4030–4040. https://doi.org/10.1021/acs.iecr.0c05700

    Article  CAS  Google Scholar 

  80. Sivaselvam S et al (2020) Enhanced removal of emerging pharmaceutical contaminant ciprofloxacin and pathogen inactivation using morphologically tuned MgO nanostructures. J Environ Chem Eng 8:104256. https://doi.org/10.1016/j.jece.2020.104256

    Article  CAS  Google Scholar 

  81. Dao TH et al (2018) Removal of antibiotic from aqueous solution using synthesized TiO2 nanoparticles: characteristics and mechanisms. Environ Earth Sci 77:1–14. https://doi.org/10.1007/s12665-018-7550-z

    Article  CAS  Google Scholar 

  82. Malakootian M, Nasiri A, Amiri Gharaghani M (2020) Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem Eng Commun 207:56–72. https://doi.org/10.1080/00986445.2019.1573168

    Article  CAS  Google Scholar 

  83. Bautitz IR, Velosa AC, Nogueira RFP (2012) Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88:688–692. https://doi.org/10.1016/j.chemosphere.2012.03.077

    Article  CAS  PubMed  Google Scholar 

  84. Chen J et al (2012) Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem Eng J 181–182:113–119. https://doi.org/10.1016/j.cej.2011.11.037

    Article  CAS  Google Scholar 

  85. Xiao Y, Hwang JY, Sun YK (2016) ‘Transition metal carbide-based materials: synthesis and applications in electrochemical energy. J Mater Chem A Royal Soc Chem 4:10379–10393. https://doi.org/10.1039/c6ta03832h

    Article  CAS  Google Scholar 

  86. Kim S et al (2021) Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem Eng J 406:126789. https://doi.org/10.1016/j.cej.2020.126789

    Article  CAS  Google Scholar 

  87. Thi Dang Y et al (2020) Microwave-assisted synthesis of nano Hf- and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Microporous Mesoporous Mater 298:110064. https://doi.org/10.1016/j.micromeso.2020.110064

    Article  CAS  Google Scholar 

  88. Cao J et al (2018) One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis. Chem Eng J 353:126–137. https://doi.org/10.1016/j.cej.2018.07.060

    Article  CAS  Google Scholar 

  89. Cui J et al (2020) Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride. Chem Eng J 395:125174. https://doi.org/10.1016/j.cej.2020.125174

    Article  CAS  Google Scholar 

  90. Elhussein EAA, Şahin S, Bayazit ŞS (2020) Removal of carbamazepine using UiO-66 and UiO-66/graphene nanoplatelet composite. J Environ Chem Eng 8:2–9. https://doi.org/10.1016/j.jece.2020.103898

    Article  CAS  Google Scholar 

  91. Ma J et al (2020) Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments. J Ind Eng Chem Korean Soc Ind Eng Chem 90:178–189. https://doi.org/10.1016/j.jiec.2020.07.010

    Article  CAS  Google Scholar 

  92. Fang X et al (2020) High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms. Appl Surf Sci 518:146226. https://doi.org/10.1016/j.apsusc.2020.146226

    Article  CAS  Google Scholar 

  93. Zango ZU et al (2021) Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: a comprehensive review. Polyhedron 210:115515. https://doi.org/10.1016/j.poly.2021.115515

    Article  CAS  Google Scholar 

  94. El-Sayed ESM, Yuan D (2020) Waste to MOFs: Sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications. Green Chem 22:4082–4104. https://doi.org/10.1039/d0gc00353k

    Article  CAS  Google Scholar 

  95. Cho BG et al (2022) Adsorption modeling of microcrystalline cellulose for pharmaceutical-based micropollutants. J Hazard Mater 426:128087. https://doi.org/10.1016/j.jhazmat.2021.128087

    Article  CAS  PubMed  Google Scholar 

  96. Hammer L, Palmowski L (2021) Fate of selected organic micropollutants during anaerobic sludge digestion. Water Environ Res 93:1910–1924. https://doi.org/10.1002/wer.1603

    Article  CAS  PubMed  Google Scholar 

  97. Pei A et al (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. https://doi.org/10.1039/c2sm27344f

    Article  CAS  Google Scholar 

  98. Steele DF et al (2003) Adsorption of an amine drug onto microcrystalline cellulose and silicified microcrystalline cellulose samples. Drug Dev Ind Pharm 29:475–487. https://doi.org/10.1081/DDC-120018382

    Article  CAS  PubMed  Google Scholar 

  99. Zhang N et al (2020) Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: a review. J Clean Prod 277:123360. https://doi.org/10.1016/j.jclepro.2020.123360

    Article  CAS  Google Scholar 

  100. Foroughi M, Azqhandi MHA (2020) A biological-based adsorbent for a non-biodegradable pollutant: modeling and optimization of Pb (II) remediation using GO-CS-Fe3O4-EDTA nanocomposite. J Mol Liq 318:114077. https://doi.org/10.1016/j.molliq.2020.114077

    Article  CAS  Google Scholar 

  101. Shah J, Jan MR (2020) Microextraction of selected endocrine disrupting phenolic compounds using magnetic chitosan biopolymer graphene oxide nanocomposite. J Polym Environ 28:1673–1683. https://doi.org/10.1007/s10924-020-01714-x

  102. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Coll Interface Sci 204:35–56. https://doi.org/10.1016/j.cis.2013.12.005

    Article  CAS  Google Scholar 

  103. Ramesha GK et al (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277. https://doi.org/10.1016/j.jcis.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  104. da Silva Alves DC et al (2021) Recent developments in Chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules 26:594. https://doi.org/10.3390/molecules26030594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Afzal MZ et al (2018) Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci Total Environ 639:560–569. https://doi.org/10.1016/j.scitotenv.2018.05.129

    Article  CAS  PubMed  Google Scholar 

  106. Firozjaee TT et al (2017) The removal of diazinon from aqueous solution by chitosan/carbon nanotube adsorbent. Desalin Water Treat 79:291–300. https://doi.org/10.5004/dwt.2017.20794

    Article  CAS  Google Scholar 

  107. Liu Y et al (2019) Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohyd Polym 220:141–148. https://doi.org/10.1016/j.carbpol.2019.05.060

    Article  CAS  Google Scholar 

  108. Ahmed MB et al (2016) Insight into biochar properties and its cost analysis. Biomass Bioenerg 84:76–86. https://doi.org/10.1016/j.biombioe.2015.11.002

    Article  CAS  Google Scholar 

  109. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243. https://doi.org/10.1016/S0304-3894(02)00263-7

    Article  CAS  PubMed  Google Scholar 

  110. Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328. https://doi.org/10.1016/j.jcis.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  111. Lin SH, Juang RS (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manage 90:1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  112. Zhang S et al (2016) Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chem Eng J 304:325–334. https://doi.org/10.1016/j.cej.2016.06.087

    Article  CAS  Google Scholar 

  113. Zhang YL et al (2013) Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohyd Polym 97:809–816. https://doi.org/10.1016/j.carbpol.2013.05.072

    Article  CAS  Google Scholar 

  114. Costa C, Rodrigues AE (1985) Experimental diffusion of phenol in and study of batch and CSTR. Chem Eng Sci 40:983–993

    Article  CAS  Google Scholar 

  115. Costa C, Rodriques A (1985) Regeneration of polymeric adsorbents in a CSTR. Chem Eng Sci 40:707–713. https://doi.org/10.1016/0009-2509(85)85023-5

    Article  CAS  Google Scholar 

  116. Balarak D, Khatibi AD, Chandrika K (2020) Antibiotics removal from aqueous solution and pharmaceutical wastewater by adsorption process: a review. Int J Pharm Invest 10:106–111. https://doi.org/10.5530/ijpi.2020.2.19

    Article  CAS  Google Scholar 

  117. Singh S et al (2021) Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: a review on mechanism, kinetics, valorization and circular economy. J Environ Manage 300:113569. https://doi.org/10.1016/j.jenvman.2021.113569

    Article  CAS  PubMed  Google Scholar 

  118. Liakos EV et al (2021) Chitosan adsorbent derivatives for pharmaceuticals removal from effluents: a review. Macromol 1:130–154. https://doi.org/10.3390/macromol1020011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, M., Aminabhavi, T.M., V. Costa, M.E., Ul Islam, S., Appels, L., Dewil, R. (2023). Adsorptive Techniques for the Removal of Pharmaceutically Active Compounds—Materials and Mechanisms. In: Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20806-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20806-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20805-8

  • Online ISBN: 978-3-031-20806-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics