Skip to main content

Membrane Separation Technologies for the Elimination of Pharmaceutically Active Compounds—Progress and Challenges

  • Chapter
  • First Online:
Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Abstract

Membrane filtration has been considered a popular method for the treatment of (waste)waters originating from various industrial and nonindustrial sources. They have also been recently used for the removal of PhACs as an emerging environmental concern. This chapter aims to provide an overview of various membrane filtration techniques (i.e., forward osmosis and reverse osmosis, nanofiltration, ultrafiltration, microfiltration, and membrane bioreactors) that have been implemented for the removal of such compounds from polluted (waste)waters. The existing challenges (i.e., fouling) for the application of such technologies and the opportunities for further studies have been briefly reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Carbamazepine with a pKa of 9.73 represents a neutral nature under pH values below 9.73.

  2. 2.

    Sulfamethoxazole has a pKa of 5.83.

  3. 3.

    Due to the protonation, deprotonation of the primary aromatic amine, and the sulfonamide group (as the two functional groups present in this molecule), respectively.

  4. 4.

    Such as terbutaline, atenolol, and fluoxetine.

  5. 5.

    Such as ketoprofen, diclofenac, and bezafibrate.

  6. 6.

    Molecular weight of PhACs is below 1000 g/mol.

  7. 7.

    Concentration polarization is caused by the accumulation of solutes near the surface of the membrane [25].

References

  1. Daguerre-martini S et al (2018) Nitrogen recovery from wastewater using gas-permeable membranes: impact of inorganic carbon content and natural organic matter. Water Res 137:201–210. https://doi.org/10.1016/j.watres.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  2. Yan T et al (2018) A critical review on membrane hybrid system for nutrient recovery from wastewater. Chem Eng J 348:143–156. https://doi.org/10.1016/j.cej.2018.04.166

    Article  CAS  Google Scholar 

  3. Mallakpour S, Azadi E (2021) Nanofiltration membranes for food and pharmaceutical industries. Emergent Mater (0123456789). https://doi.org/10.1007/s42247-021-00290-7

  4. Kamali M, Sweygers N et al (2022) Biochar for soil applications-sustainability aspects, challenges and future prospects. Chem Eng J 428:131189. https://doi.org/10.1016/j.cej.2021.131189

    Article  CAS  Google Scholar 

  5. Aftab A et al (2020) Influence of tailor-made TiO2/API bentonite nanocomposite on drilling mud performance: towards enhanced drilling operations. Appl Clay Sci 199:105862. https://doi.org/10.1016/j.clay.2020.105862

    Article  CAS  Google Scholar 

  6. Ahmadi A et al (2020) The role of bentonite clay and bentonite clay@ MnFe2O4 composite and their physico-chemical properties on the removal of Cr (III) and Cr (VI) from aqueous media. Environ Sci Pollut Res 1–14

    Google Scholar 

  7. Babu Valapa R et al (2017) Chapter 2—an overview of polymer–clay nanocomposites. In: Jlassi K, Chehimi MM, Thomas SBT-C-P N (eds) Elsevier, pp 29–81. https://doi.org/10.1016/B978-0-323-46153-5.00002-1

  8. Mansoori S et al (2020) Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polym Testing 84:106381. https://doi.org/10.1016/j.polymertesting.2020.106381

    Article  CAS  Google Scholar 

  9. Li X, Hai FI, Nghiem LD (2011) Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Biores Technol 102:5319–5324. https://doi.org/10.1016/j.biortech.2010.11.070

    Article  CAS  Google Scholar 

  10. Nghiem LD, Schäfer AI, Elimelech M (2006) Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J Membr Sci 286:52–59. https://doi.org/10.1016/j.memsci.2006.09.011

    Article  CAS  Google Scholar 

  11. Xiao Y et al (2017) Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chem Eng J 321:335–345. https://doi.org/10.1016/j.cej.2017.03.118

    Article  CAS  Google Scholar 

  12. Nghiem LD, Schäfer AI, Elimelech M (2005) Pharmaceutical retention mechanisms by nanofiltration membranes. Environ Sci Technol 39:7698–7705. https://doi.org/10.1021/es0507665

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Sheng C et al (2016) Removal of trace pharmaceuticals from water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system. Sci Total Environ 550:1075–1083. https://doi.org/10.1016/j.scitotenv.2016.01.179

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Liu X et al (2020) Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment. Nucl Eng Technol 52:581–588. https://doi.org/10.1016/j.net.2019.08.007

    Article  CAS  Google Scholar 

  15. Siang K et al (2022) Organic solvent forward osmosis membranes for pharmaceutical concentration. J Membr Sci 642:119965. https://doi.org/10.1016/j.memsci.2021.119965

    Article  CAS  Google Scholar 

  16. Zhao S et al (2021) Engineering antifouling reverse osmosis membranes: a review. Desalination 499:114857. https://doi.org/10.1016/j.desal.2020.114857

    Article  CAS  Google Scholar 

  17. Xie M et al (2012) Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Res 46:2683–2692. https://doi.org/10.1016/j.watres.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  18. Xie M, Price WE, Nghiem LD (2012) Rejection of pharmaceutically active compounds by forward osmosis: role of solution pH and membrane orientation. Sep Purif Technol 93:107–114. https://doi.org/10.1016/j.seppur.2012.03.030

    Article  CAS  Google Scholar 

  19. Dai Q et al (2020) ‘Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-019-13704-2

    Article  CAS  ADS  Google Scholar 

  20. Goh KS et al (2021) Thin film composite hollow fibre membrane for pharmaceutical concentration and solvent recovery. J Membr Sci 621:119008. https://doi.org/10.1016/j.memsci.2020.119008

    Article  CAS  Google Scholar 

  21. Jin X et al (2012) Rejection of pharmaceuticals by forward osmosis membranes. J Hazard Mater 227–228:55–61. https://doi.org/10.1016/j.jhazmat.2012.04.077

    Article  CAS  PubMed  Google Scholar 

  22. Oatley-Radcliffe DL et al (2017) Nanofiltration membranes and processes: a review of research trends over the past decade. J Water Process Eng 19:164–171. https://doi.org/10.1016/j.jwpe.2017.07.026

    Article  Google Scholar 

  23. Ventresque C et al (2000) Outstanding feat of modern technology: the Mery-sur-Oise nanofiltration treatment plant (340,000 m3/d). Desalination 131:1–16. https://doi.org/10.1016/S0011-9164(00)90001-8

    Article  CAS  Google Scholar 

  24. Dolar D et al (2017) Adsorption of hydrophilic and hydrophobic pharmaceuticals on RO/NF membranes: Identification of interactions using FTIR. J Appl Polym Sci 134:17–21. https://doi.org/10.1002/app.44426

    Article  CAS  Google Scholar 

  25. Qu F et al (2019) ‘Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals. Environ Sci Water Res Tech Royal Soc Chem 5:672–683. https://doi.org/10.1039/c9ew00022d

    Article  CAS  Google Scholar 

  26. Azaïs A et al (2014) Nanofiltration for wastewater reuse: counteractive effects of fouling and matrice on the rejection of pharmaceutical active compounds. Sep Purif Technol 133:313–327. https://doi.org/10.1016/j.seppur.2014.07.007

    Article  CAS  Google Scholar 

  27. Acero JL et al (2010) Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chem Eng J 163:264–272. https://doi.org/10.1016/j.cej.2010.07.060

    Article  CAS  Google Scholar 

  28. Vergili I (2013) Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J Environ Manage 127:177–187. https://doi.org/10.1016/j.jenvman.2013.04.036

    Article  CAS  PubMed  Google Scholar 

  29. Oh Y et al (2017) Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants. J Membr Sci 541:235–243. https://doi.org/10.1016/j.memsci.2017.07.005

    Article  CAS  Google Scholar 

  30. Soares EV et al (2021) The effect of ph on atenolol/nanofiltration membranes affinity. Membranes 11:1–11. https://doi.org/10.3390/membranes11090689

    Article  CAS  Google Scholar 

  31. Dai R et al (2020) Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds. Environ Sci Technol 54:7619–7628. https://doi.org/10.1021/acs.est.0c00832

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Schäfer AI, Nghiem LD, Waite TD (2003) Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environ Sci Technol 37:182–188. https://doi.org/10.1021/es0102336

    Article  CAS  PubMed  ADS  Google Scholar 

  33. McCallum EA et al (2008) Adsorption, desorption, and steady-state removal of 17β-estradiol by nanofiltration membranes. J Membr Sci 319:38–43. https://doi.org/10.1016/j.memsci.2008.03.014

    Article  CAS  Google Scholar 

  34. Gomes D et al (2020) Removal of a mixture of pharmaceuticals sulfamethoxazole and diclofenac from water streams by a polyamide nanofiltration membrane. Water Sci Technol 81:732–743. https://doi.org/10.2166/wst.2020.166

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y et al (2018) Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes. Chemosphere 200:36–47. https://doi.org/10.1016/j.chemosphere.2018.02.088

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Taheri E et al (2020) Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: transport modeling and pore radius estimation. J Environ Manage 271:111005. https://doi.org/10.1016/j.jenvman.2020.111005

    Article  CAS  PubMed  Google Scholar 

  37. Zhang R et al (2020) How to coordinate the trade-off between water permeability and salt rejection in nanofiltration? J Mater Chem A Royal Soc Chem 8:8831–8847. https://doi.org/10.1039/d0ta02510k

    Article  CAS  Google Scholar 

  38. Moreno M et al (2022) Water and wastewater treatment by micellar enhanced ultrafiltration—a critical review. J Water Process Eng 46:102574. https://doi.org/10.1016/j.jwpe.2022.102574

    Article  Google Scholar 

  39. Garcia-Ivars J et al (2017) Rejection of trace pharmaceutically active compounds present in municipal wastewaters using ceramic fine ultrafiltration membranes: effect of feed solution pH and fouling phenomena. Sep Purif Technol 175:58–71. https://doi.org/10.1016/j.seppur.2016.11.027

    Article  CAS  Google Scholar 

  40. Salazar H et al (2015) Poly(vinylidene fluoride-trifluoroethylene)/NAY zeolite hybrid membranes as a drug release platform applied to ibuprofen release. Colloids Surf, A 469:93–99. https://doi.org/10.1016/j.colsurfa.2014.12.064

    Article  CAS  Google Scholar 

  41. Bhattacharya P et al (2020) Application of green synthesized ZnO nanoparticle coated ceramic ultrafiltration membrane for remediation of pharmaceutical components from synthetic water: reusability assay of treated water on seed germination. J Environ Chem Eng 8:103803. https://doi.org/10.1016/j.jece.2020.103803

    Article  CAS  Google Scholar 

  42. Matos M et al (2016) Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J Membr Sci 520:749–759. https://doi.org/10.1016/j.memsci.2016.08.037

    Article  CAS  Google Scholar 

  43. Kim S et al (2018) Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem Eng J 335:896–914. https://doi.org/10.1016/j.cej.2017.11.044

    Article  CAS  Google Scholar 

  44. Kim S et al (2020) A metal organic framework-ultrafiltration hybrid system for removing selected pharmaceuticals and natural organic matter. Chem Eng J 382:122920. https://doi.org/10.1016/j.cej.2019.122920

    Article  CAS  Google Scholar 

  45. Back JO et al (2018) Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater. J Environ Chem Eng 6:7377–7385. https://doi.org/10.1016/j.jece.2018.07.047

    Article  CAS  Google Scholar 

  46. Burba P, Geltenpoth H, Nolte J (2005) Ultrafiltration behavior of selected pharmaceuticals on natural and synthetic membranes in the presence of humic-rich hydrocolloids. Anal Bioanal Chem 382:1934–1941. https://doi.org/10.1007/s00216-005-3296-z

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez-Mozaz S et al (2015) Pharmaceuticals and pesticides in reclaimed water: efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant. J Hazard Mater 282:165–173. https://doi.org/10.1016/j.jhazmat.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  48. Plakas KV et al (2019) Heterogeneous Fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane. Chem Eng J 373:700–708. https://doi.org/10.1016/j.cej.2019.05.092

    Article  CAS  Google Scholar 

  49. Oh BS et al (2007) Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process. J Membr Sci 289:178–186. https://doi.org/10.1016/j.memsci.2006.11.052

    Article  CAS  Google Scholar 

  50. Décima MA et al (2021) A review on the removal of carbamazepine from aqueous solution by using activated carbon and biochar. Sustainability (Switzerland) 13:11760. https://doi.org/10.3390/su132111760

    Article  CAS  Google Scholar 

  51. Shan D et al (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163. https://doi.org/10.1016/j.jhazmat.2015.11.047

    Article  CAS  PubMed  Google Scholar 

  52. Jiang J, Pang SY, Ma J (2009) Comment on “adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes. Environ Sci Technol 43:3398–3399. https://doi.org/10.1021/es803273b

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Westerhoff P et al (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663. https://doi.org/10.1021/es0484799

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Wang Y et al (2015) Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms. J Membr Sci 479:165–174. https://doi.org/10.1016/j.memsci.2015.01.034

    Article  CAS  Google Scholar 

  55. Viegas RMC et al (2020) Pilot studies and cost analysis of hybrid powdered activated carbon/ceramic microfiltration for controlling pharmaceutical compounds and organic matter in water reclamation. Water (Switzerland) 12(1). https://doi.org/10.3390/w12010033

  56. Sengar A, Vijayanandan A (2022) Effects of pharmaceuticals on membrane bioreactor: review on membrane fouling mechanisms and fouling control strategies. Sci Total Environ 808:152132. https://doi.org/10.1016/j.scitotenv.2021.152132

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Dawas-Massalha A et al (2014) Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment. Bioresource 167:336–342. https://doi.org/10.1016/j.biortech.2014.06.003

    Article  CAS  Google Scholar 

  58. Zandi S et al (2019) Industrial biowastes treatment using membrane bioreactors (MBRs)—a scientometric study. J Environ Manage 247:462–473. https://doi.org/10.1016/j.jenvman.2019.06.066

    Article  CAS  PubMed  Google Scholar 

  59. Snyder SA et al (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202:156–181. https://doi.org/10.1016/j.desal.2005.12.052

    Article  CAS  Google Scholar 

  60. De Gusseme B et al (2009) Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res 43:2493–2503. https://doi.org/10.1016/j.watres.2009.02.028

    Article  CAS  PubMed  Google Scholar 

  61. Huang L, Lee DJ (2015) Membrane bioreactor: a mini review on recent R&D works. Biores Technol 194:383–388. https://doi.org/10.1016/j.biortech.2015.07.013

    Article  CAS  Google Scholar 

  62. Bernhard M, Müller J, Knepper TP (2006) Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res 40:3419–3428. https://doi.org/10.1016/j.watres.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  63. Joss A et al (2004) Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 38:3047–3055. https://doi.org/10.1021/es0351488

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Wen X et al (2004) Treatment of hospital wastewater using a submerged membrane bioreactor. Process Biochem 39(11):1427–1431. https://doi.org/10.1016/S0032-9592(03)00277-2

    Article  CAS  Google Scholar 

  65. Kamali M, Aminabhavi TM et al (2022) Acclimatized activated sludge for enhanced phenolic wastewater treatment using pinewood biochar. Chem Eng J 427:131708. https://doi.org/10.1016/j.cej.2021.131708

    Article  CAS  Google Scholar 

  66. Kamali M et al (2021) Biochar in water and wastewater treatment—a sustainability assessment. Chem Eng J 420:129946. https://doi.org/10.1016/j.cej.2021.129946

    Article  CAS  Google Scholar 

  67. Xiang W et al (2020) Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539. https://doi.org/10.1016/j.chemosphere.2020.126539

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Ma C et al (2012) High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature. Biores Technol 113:136–142. https://doi.org/10.1016/j.biortech.2012.02.007

    Article  CAS  Google Scholar 

  69. Krzeminski P et al (2019) Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Sci Total Environ 648:1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Cornejo J et al (2020) Ibuprofen removal by a microfiltration membrane bioreactor during the startup phase. J Environ Sci Health—Part A Toxic/Hazardous Subst Environ Eng 55:374–384. https://doi.org/10.1080/10934529.2019.1697587

    Article  CAS  Google Scholar 

  71. Arya V, Philip L, Murty Bhallamudi S (2016) Performance of suspended and attached growth bioreactors for the removal of cationic and anionic pharmaceuticals. Chem Eng J 284:1295–1307. https://doi.org/10.1016/j.cej.2015.09.070

    Article  CAS  Google Scholar 

  72. Díaz O et al (2017) Nanofiltration/Reverse osmosis as pretreatment technique for water reuse: ultrafiltration versus tertiary membrane reactor. Clean Soil, Air, Water 45:1600014. https://doi.org/10.1002/clen.201600014

    Article  CAS  Google Scholar 

  73. Popple T et al (2016) Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: case study of propranolol. Water Res 88:83–92. https://doi.org/10.1016/j.watres.2015.09.033

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y et al (2019) Novel insights into membrane fouling caused by gel layer in a membrane bioreactor: effects of hydrogen bonding. Biores Technol 276:219–225. https://doi.org/10.1016/j.biortech.2019.01.010

    Article  CAS  Google Scholar 

  75. Le-clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284:17–53. https://doi.org/10.1016/j.memsci.2006.08.019

    Article  CAS  Google Scholar 

  76. Li W et al (2018) Ceramic membrane fouling and cleaning during ultrafiltration of limed sugarcane juice. Sep Purif Technol 190:9–24. https://doi.org/10.1016/j.seppur.2017.08.046

    Article  CAS  Google Scholar 

  77. Lin H et al (2014) A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. J Membr Sci 460:110–125. https://doi.org/10.1016/j.memsci.2014.02.034

    Article  CAS  Google Scholar 

  78. Lin YL, Chiou JH, Lee CH (2014) Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. J Hazard Mater 277:102–109. https://doi.org/10.1016/j.jhazmat.2014.01.023

    Article  CAS  PubMed  Google Scholar 

  79. Nyström M, Kaipia L, Luque S (1995) Fouling and retention of nanofiltration membranes. J Membr Sci 98:249–262. https://doi.org/10.1016/0376-7388(94)00196-6

    Article  Google Scholar 

  80. Azaïs A et al (2016) Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration. Water Res 104:156–167. https://doi.org/10.1016/j.watres.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  81. Zularisam AW, Ismail AF, Salim R (2006) Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination 194:211–231. https://doi.org/10.1016/j.desal.2005.10.030

    Article  CAS  Google Scholar 

  82. Lin YL (2017) Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. J Membr Sci 542:342–351. https://doi.org/10.1016/j.memsci.2017.08.023

    Article  CAS  Google Scholar 

  83. Wang F et al (2014) Effects of ionic strength on membrane fouling in a membrane bioreactor. Biores Technol 156:35–41. https://doi.org/10.1016/j.biortech.2014.01.014

    Article  CAS  Google Scholar 

  84. Lee J et al (2017) Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: fouling mechanism as a function of pH and ionic strength. Sep Purif Technol 176:323–334. https://doi.org/10.1016/j.seppur.2016.10.061

    Article  CAS  Google Scholar 

  85. Jarusutthirak C, Mattaraj S, Jiraratananon R (2007) Influence of inorganic scalants and natural organic matter on nanofiltration membrane fouling. J Membr Sci 287:138–145. https://doi.org/10.1016/j.memsci.2006.10.034

    Article  CAS  Google Scholar 

  86. Kamali M et al (2019) Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem Eng J 368:474–494. https://doi.org/10.1016/j.cej.2019.02.075

    Article  CAS  Google Scholar 

  87. Li H et al (2019) Production of polyhydroxyalkanoates by activated sludge: correlation with extracellular polymeric substances and characteristics of activated sludge. Chem Eng J 361:219–226. https://doi.org/10.1016/j.cej.2018.12.066

    Article  CAS  ADS  Google Scholar 

  88. Stöckl M et al (2019) Extracellular polymeric substances from geobacter sulfurreducens biofilms in microbial fuel cells. ACS Appl Mater Interfaces 11:8961–8968. https://doi.org/10.1021/acsami.8b14340

    Article  CAS  PubMed  Google Scholar 

  89. Lin YL, Tsai JZ, Hung CH (2019) Using in situ modification to enhance organic fouling resistance and rejection of pharmaceutical and personal care products in a thin-film composite nanofiltration membrane. Environ Sci Pollut Res 26:34073–34084. https://doi.org/10.1007/s11356-018-3234-1

    Article  CAS  Google Scholar 

  90. Xiao Y et al (2018) In tandem effects of activated carbon and quorum quenching on fouling control and simultaneous removal of pharmaceutical compounds in membrane bioreactors. Chem Eng J 341:610–617. https://doi.org/10.1016/j.cej.2018.02.073

    Article  CAS  Google Scholar 

  91. Palani KN et al (2019) Development of integrated membrane bioreactor and numerical modeling to mitigate fouling and reduced energy consumption in pharmaceutical wastewater treatment. J Ind Eng Chem Korean Soc Ind Eng Chem 76:150–159. https://doi.org/10.1016/j.jiec.2019.03.028

    Article  CAS  Google Scholar 

  92. Bojaran M, Akbari A, Yunessnia lehi A (2019) Novel ultrafiltration membranes with the least fouling properties for the treatment of veterinary antibiotics in the pharmaceutical wastewater. Polym Adv Technol 30:1716–1723. https://doi.org/10.1002/pat.4603

    Article  CAS  Google Scholar 

  93. Zhao Y et al (2018) Effects of organic fouling and cleaning on the retention of pharmaceutically active compounds by ceramic nanofiltration membranes. J Membr Sci 563:734–742. https://doi.org/10.1016/j.memsci.2018.06.047

    Article  CAS  Google Scholar 

  94. Chen L et al (2020) Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater. Biores Technol 302:122805. https://doi.org/10.1016/j.biortech.2020.122805

    Article  CAS  Google Scholar 

  95. Lan Y et al (2020) Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: membrane fouling control and long-term stability. Sep Purif Technol 231:115920. https://doi.org/10.1016/j.seppur.2019.115920

    Article  CAS  Google Scholar 

  96. Park J, Yamashita N, Tanaka H (2018) Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR. Chemosphere 197:467–476. https://doi.org/10.1016/j.chemosphere.2018.01.063

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Wang S et al (2021) A review of advances in EDCs and PhACs removal by nanofiltration: mechanisms, impact factors and the influence of organic matter. Chem Eng J 406:126722. https://doi.org/10.1016/j.cej.2020.126722

    Article  CAS  Google Scholar 

  98. Du Y et al (2022) Recent advances in the theory and application of nanofiltration: a review. Curr Pollut Rep 8:51–80. https://doi.org/10.1007/s40726-021-00208-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, M., Aminabhavi, T.M., V. Costa, M.E., Ul Islam, S., Appels, L., Dewil, R. (2023). Membrane Separation Technologies for the Elimination of Pharmaceutically Active Compounds—Progress and Challenges. In: Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20806-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20806-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20805-8

  • Online ISBN: 978-3-031-20806-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics