Skip to main content

Pharmaceutically Active Compounds in Anaerobic Digestion Processes—Biodegradation and Fate

  • Chapter
  • First Online:
Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Abstract

The presence of pharmaceutically active compounds (PhACs) in water bodies has raised serious concerns about the possible environmental and health impacts. On the other hand, conventional wastewater treatment methods such as activated sludge have not been designed for the removal of PhACs, and hence, ongoing discharge of these pollutants into the environment can be highly expected. This chapter aims to explore the applicability of the anaerobic digestion process (AD) to remove various types of PhACs from streams and the possible toxic effects of these compounds on AD microorganisms. The involved mechanisms have also been discussed critically to explore the opportunities for the improvement in the efficiency of AD systems to deal with this type of contaminants of emerging concern. The respective sustainability aspects are also discussed, and recommendations for future studies in this regard are provided. Finally, further reading suggestions have been provided to fulfill the need for extra information in the applicability of AD processes for PhACs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     > 25 mg/L, > 1 mg/L, > 10 mg/L, > 80 mg/L, > 90 mg/L, > 130 mg/L, and > 10 mg/L for sulfamethoxazole, tetracycline, ofloxacin, ciprofloxacin, sulfamerazine, tylosin, and ceftiofur, respectively.

  2. 2.

    Described as nonionizing radiation within 0.3–300 GHz which falls between infrared light and radio waves in the electromagnetic spectrum.

  3. 3.

    The system was not efficient for the removal of ofloxacin.

References

  1. Pigoli A et al (2021) Thermophilic anaerobic digestion as suitable bioprocess producing organic and chemical renewable fertilizers: a full-scale approach. Waste Manage 124:356–367. https://doi.org/10.1016/j.wasman.2021.02.028

    Article  CAS  Google Scholar 

  2. Wang C et al (2019) A short-term stimulation of ethanol enhances the effect of magnetite on anaerobic digestion. Appl Microbiol Biotechnol 103:1511–1522. https://doi.org/10.1007/s00253-018-9531-2

    Article  CAS  PubMed  Google Scholar 

  3. Wang M, Li R, Zhao Q (2019) Distribution and removal of antibiotic resistance genes during anaerobic sludge digestion with alkaline, thermal hydrolysis and ultrasonic pretreatments. Front Environ Sci Eng 13:43. https://doi.org/10.1007/s11783-019-1127-2

    Article  CAS  ADS  Google Scholar 

  4. Curry N, Pillay P (2012) Biogas prediction and design of a food waste to energy system for the urban environment. Renew Energy 41:200–209

    Article  CAS  Google Scholar 

  5. Lim M et al (2020) Removal of organic micropollutants in anaerobic membrane bioreactors in wastewater treatment: critical review. Environ Sci: Water Res Technol 6:1230–1243. https://doi.org/10.1039/c9ew01058k

    Article  CAS  Google Scholar 

  6. Meyer T, Edwards EA (2014) Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res 65:321–349. https://doi.org/10.1016/j.watres.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  7. Lv L et al (2017) Microbial community composition and function in a pilot-scale anaerobic-anoxic-aerobic combined process for the treatment of traditional Chinese medicine wastewater. Biores Technol 240:84–93. https://doi.org/10.1016/j.biortech.2017.01.053

    Article  CAS  Google Scholar 

  8. Kamali M et al (2016) Anaerobic digestion of pulp and paper mill wastes—an overview of the developments and improvement opportunities. Chem Eng J 298:162–182. https://doi.org/10.1016/j.cej.2016.03.119

    Article  CAS  Google Scholar 

  9. Ji JY, Xing YJ, Ma ZT, Zhang M et al (2013a) Acute toxicity of pharmaceutical wastewaters containing antibiotics to anaerobic digestion treatment. Chemosphere 91:1094–1098. https://doi.org/10.1016/j.chemosphere.2013.01.009

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Ji JY, Xing YJ, Ma ZT, Cai J et al (2013b) Toxicity assessment of anaerobic digestion intermediates and antibiotics in pharmaceutical wastewater by luminescent bacterium. J Hazard Mater 246–247:319–323. https://doi.org/10.1016/j.jhazmat.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  11. Aydin S, Ince B et al (2015) Combined effect of erythromycin, tetracycline and sulfamethoxazole on performance of anaerobic sequencing batch reactors. Biores Technol 186:207–214. https://doi.org/10.1016/j.biortech.2015.03.043

    Article  CAS  Google Scholar 

  12. Aydin S, Cetecioglu Z et al (2015) Inhibitory effects of antibiotic combinations on syntrophic bacteria, homoacetogens and methanogens. Chemosphere 120:515–520. https://doi.org/10.1016/j.chemosphere.2014.09.045

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Beneragama N et al (2013) The combined effect of cefazolin and oxytertracycline on biogas production from thermophilic anaerobic digestion of dairy manure. Biores Technol 133:23–30. https://doi.org/10.1016/j.biortech.2013.01.032

    Article  CAS  Google Scholar 

  14. Svojitka J et al (2017) Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment. Biores Technol 229:180–189. https://doi.org/10.1016/j.biortech.2017.01.022

    Article  CAS  Google Scholar 

  15. Aziz A et al (2022) Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment—a comprehensive review. J Environ Chem Eng 10:106423. https://doi.org/10.1016/j.jece.2021.106423

    Article  CAS  Google Scholar 

  16. Kumar A et al (2017) The ins and outs of microorganism-electrode electron transfer reactions. Nat Rev Chem 1:1–13. https://doi.org/10.1038/s41570-017-0024

    Article  CAS  Google Scholar 

  17. Lovley DR (2017a) Electrically conductive pili: Biological function and potential applications in electronics. Curr Opin Electrochem 4(1):190–198. https://doi.org/10.1016/j.coelec.2017.08.015

    Article  CAS  Google Scholar 

  18. Lovley DR (2017b) Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol 71:643–664. https://doi.org/10.1146/annurev-micro-030117-020420

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J et al (2020) The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: a review. Water Res 186:116405. https://doi.org/10.1016/j.watres.2020.116405

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y et al (2012) Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment. Chem Eng J 192:179–185. https://doi.org/10.1016/j.cej.2012.03.044

    Article  CAS  Google Scholar 

  21. Dai C et al (2022) Enhancing anaerobic digestion of pharmaceutical industries wastewater with the composite addition of zero valent iron (ZVI) and granular activated carbon (GAC). Biores Technol 346:126566. https://doi.org/10.1016/j.biortech.2021.126566

    Article  CAS  Google Scholar 

  22. Chen WH et al (2019) Removals of pharmaceuticals in municipal wastewater using a staged anaerobic fluidized membrane bioreactor. Int Biodeterior Biodegr 140:29–36. https://doi.org/10.1016/j.ibiod.2019.03.008

    Article  CAS  Google Scholar 

  23. Huang B et al (2018) Treatment of pharmaceutical wastewater containing Β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR). Chem Eng J 341:238–247. https://doi.org/10.1016/j.cej.2018.01.149

    Article  CAS  Google Scholar 

  24. Hu D et al (2017) Performance evaluation and microbial community dynamics in a novel AnMBR for treating antibiotic solvent wastewater. Biores Technol 243:218–227. https://doi.org/10.1016/j.biortech.2017.06.095

    Article  CAS  Google Scholar 

  25. Monsalvo VM et al (2014) Removal of trace organics by anaerobic membrane bioreactors. Water Res 49:103–112. https://doi.org/10.1016/j.watres.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  26. Song X et al (2016) Effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants. Biores Technol 216:399–405. https://doi.org/10.1016/j.biortech.2016.05.075

    Article  CAS  Google Scholar 

  27. Xiao Y et al (2017) Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chem Eng J 321:335–345. https://doi.org/10.1016/j.cej.2017.03.118

    Article  CAS  Google Scholar 

  28. Li H et al (2019) Production of polyhydroxyalkanoates by activated sludge: correlation with extracellular polymeric substances and characteristics of activated sludge. Chem Eng J 361:219–226. https://doi.org/10.1016/j.cej.2018.12.066

    Article  CAS  ADS  Google Scholar 

  29. Stöckl M et al (2019) Extracellular polymeric substances from Geobacter sulfurreducens biofilms in microbial fuel cells. ACS Appl Mater Interfaces 11:8961–8968. https://doi.org/10.1021/acsami.8b14340

    Article  CAS  PubMed  Google Scholar 

  30. Kamali M et al (2019) Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem Eng J 368:474–494. https://doi.org/10.1016/j.cej.2019.02.075

    Article  CAS  Google Scholar 

  31. Kaya Y et al (2019) Investigation of membrane fouling in an anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater. J Water Process Eng 31:100822. https://doi.org/10.1016/j.jwpe.2019.100822

    Article  Google Scholar 

  32. Ahmad M, Eskicioglu C (2019) Fate of sterols, polycyclic aromatic hydrocarbons, pharmaceuticals, ammonia and solids in single-stage anaerobic and sequential anaerobic/aerobic/anoxic sludge digestion. Waste Manage 93:72–82. https://doi.org/10.1016/j.wasman.2019.05.018

    Article  CAS  Google Scholar 

  33. Cucina M et al (2017) Recovery of energy and plant nutrients from a pharmaceutical organic waste derived from a fermentative biomass: integration of anaerobic digestion and composting. J Environ Chem Eng 5:3051–3057. https://doi.org/10.1016/j.jece.2017.06.003

    Article  CAS  Google Scholar 

  34. Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  35. Farré M et al (2012) Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. J Chromatogr A 1259:86–99. https://doi.org/10.1016/j.chroma.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez-Gil L et al (2016) Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge? Water Res 102:211–220. https://doi.org/10.1016/j.watres.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  37. Kim SD et al (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021. https://doi.org/10.1016/j.watres.2006.06.034

    Article  CAS  PubMed  Google Scholar 

  38. de Maria IC et al (2010) Sewage sludge application to agricultural land as soil physical conditioner. Revista Brasileira de Ciencia do Solo 34:967–974. https://doi.org/10.1590/s0100-06832010000300038

    Article  Google Scholar 

  39. Bester K (2003) Triclosan in a sewage treatment process—balances and monitoring data. Water Res 37:3891–3896. https://doi.org/10.1016/S0043-1354(03)00335-X

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Lai KM, Scrimshaw MD, Lester JN (2002) The effects of natural and synthetic steroid estrogens in relation to their environmental occurrence. Crit Rev Toxicol 32:113–132. https://doi.org/10.1080/20024091064192

    Article  CAS  PubMed  Google Scholar 

  41. Yin F et al (2015) Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge. Biores Technol 177:188–193. https://doi.org/10.1016/j.biortech.2014.11.091

    Article  CAS  Google Scholar 

  42. Ben W et al (2017) Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 172:392–398. https://doi.org/10.1016/j.chemosphere.2017.01.041

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Karkman A et al (2016) High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol Ecol 92:1–7. https://doi.org/10.1093/femsec/fiw014

    Article  CAS  Google Scholar 

  44. Tong J et al (2017) Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments. Biores Technol 235:316–324. https://doi.org/10.1016/j.biortech.2017.03.104

    Article  CAS  Google Scholar 

  45. Huang H et al (2017) Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors. Sci Total Environ 580:380–387. https://doi.org/10.1016/j.scitotenv.2016.11.186

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Azizan NAZ et al (2021) Pharmaceutical compounds in anaerobic digestion: a review on the removals and effect to the process performance. J Environ Chem Eng 9(5):105926. https://doi.org/10.1016/j.jece.2021.105926

    Article  CAS  Google Scholar 

  47. Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Biores Technol 121:432–440. https://doi.org/10.1016/j.biortech.2012.06.074

    Article  CAS  Google Scholar 

  48. Bai Y et al (2019) Sludge anaerobic digestion with high concentrations of tetracyclines and sulfonamides: dynamics of microbial communities and change of antibiotic resistance genes. Biores Technol 276:51–59. https://doi.org/10.1016/j.biortech.2018.12.066

    Article  CAS  Google Scholar 

  49. Akyol Ç et al (2016) A comprehensive microbial insight into single-stage and two-stage anaerobic digestion of oxytetracycline-medicated cattle manure. Chem Eng J 303:675–684. https://doi.org/10.1016/j.cej.2016.06.006

    Article  CAS  Google Scholar 

  50. Zhi S et al (2019) How methane yield, crucial parameters and microbial communities respond to the stimulating effect of antibiotics during high solid anaerobic digestion. Biores Technol 283:286–296. https://doi.org/10.1016/j.biortech.2019.03.083

    Article  CAS  Google Scholar 

  51. Song S et al (2020) Alkaline-thermal pretreatment of spectinomycin mycelial residues: insights on anaerobic biodegradability and the fate of antibiotic resistance genes. Chemosphere 261:127821. https://doi.org/10.1016/j.chemosphere.2020.127821

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Carballa M et al (2006) Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Sci Technol 53:109–117. https://doi.org/10.2166/wst.2006.241

    Article  CAS  PubMed  Google Scholar 

  53. Jin B et al (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093

    Article  CAS  Google Scholar 

  54. Kong X et al (2021) Effects of combined ultrasonic and grinding pre-treatments on anaerobic digestion of vinegar residue: organic solubilization, hydrolysis, and CH4 production. Environ Technol (UK):1–11. https://doi.org/10.1080/09593330.2020.1870572

  55. Li C, Champagne P, Anderson BC (2013) Effects of ultrasonic and thermo-chemical pre-treatments on methane production from fat, oil and grease (FOG) and synthetic kitchen waste (KW) in anaerobic co-digestion. Biores Technol 130:187–197. https://doi.org/10.1016/j.biortech.2012.11.053

    Article  CAS  Google Scholar 

  56. Zeynali R, Khojastehpour M, Ebrahimi-Nik M (2017) Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustain Environ Res 27(6):259–264. https://doi.org/10.1016/j.serj.2017.07.001

    Article  CAS  Google Scholar 

  57. Zhou H et al (2017) Enhancement with physicochemical and biological treatments in the removal of pharmaceutically active compounds during sewage sludge anaerobic digestion processes. Chem Eng J 316:361–369. https://doi.org/10.1016/j.cej.2017.01.104

    Article  CAS  Google Scholar 

  58. Braguglia CM et al (2015) The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: role of the organic load. Chem Eng J 270:362–371. https://doi.org/10.1016/j.cej.2015.02.037

    Article  CAS  Google Scholar 

  59. Saifuddin N, Fazlili SA (2009) Effect of microwave and ultrasonic pretreatments on biogas production from anaerobic digestion of palm oil mill effluent. Am J Eng Appl Sci 2:139–146. https://doi.org/10.3844/ajeassp.2009.139.146

    Article  Google Scholar 

  60. Alenzi A et al (2021) Pharmaceuticals effect and removal, at environmentally relevant concentrations, from sewage sludge during anaerobic digestion. Biores Technol 319:124102. https://doi.org/10.1016/j.biortech.2020.124102

    Article  CAS  Google Scholar 

  61. Narumiya M et al (2013) Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. J Hazard Mater 260:305–312. https://doi.org/10.1016/j.jhazmat.2013.05.032

    Article  CAS  PubMed  Google Scholar 

  62. Gallardo-Altamirano MJ et al (2021) Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. Sci Total Environ 789:147869. https://doi.org/10.1016/j.scitotenv.2021.147869

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Carballa M et al (2007) Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res 41:2139–2150. https://doi.org/10.1016/j.watres.2007.02.012

    Article  CAS  PubMed  Google Scholar 

  64. Rout PR et al (2021) Treatment technologies for emerging contaminants in wastewater treatment plants: a review. Sci Total Environ 753:141990. https://doi.org/10.1016/j.scitotenv.2020.141990

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Gonzalez-Gil L et al (2018) Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion. Sci Total Environ 622–623:459–466. https://doi.org/10.1016/j.scitotenv.2017.12.004

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Huang X et al (2020) Clarithromycin affect methane production from anaerobic digestion of waste activated sludge. J Clean Prod 255:120321. https://doi.org/10.1016/j.jclepro.2020.120321

    Article  CAS  Google Scholar 

  67. Kallel M et al (2009) Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chem Eng J 150:391–395. https://doi.org/10.1016/j.cej.2009.01.017

    Article  CAS  Google Scholar 

  68. Pan X et al (2019) Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion. Chem Eng J 359:662–671. https://doi.org/10.1016/j.cej.2018.11.135

    Article  CAS  Google Scholar 

  69. Yuan T et al (2020) ‘c’. Waste Manage 107:91–100. https://doi.org/10.1016/j.wasman.2020.04.004

  70. Zhou H et al (2021) Zero-valent iron enhanced in-situ advanced anaerobic digestion for the removal of antibiotics and antibiotic resistance genes in sewage sludge. Sci Total Environ 754:142077. https://doi.org/10.1016/j.scitotenv.2020.142077

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Suanon F et al (2017) Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: impact on methane yield and pharmaceutical and personal care products degradation. J Hazard Mater 321:47–53. https://doi.org/10.1016/j.jhazmat.2016.08.076

    Article  CAS  PubMed  Google Scholar 

  72. Zhao L et al (2019) Effects of individual and combined zinc oxide nanoparticle, norfloxacin, and sulfamethazine contamination on sludge anaerobic digestion. Biores Technol 273:454–461. https://doi.org/10.1016/j.biortech.2018.11.049

    Article  CAS  Google Scholar 

  73. Wang S et al (2021) Influence of zinc oxide nanoparticles on anaerobic digestion of waste activated sludge and microbial communities. RSC Adv 11:5580–5589. https://doi.org/10.1039/d0ra08671a

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Gonzalez-Salgado I et al (2020) Combining thermophilic aerobic reactor (TAR) with mesophilic anaerobic digestion (MAD) improves the degradation of pharmaceutical compounds. Water Res 182:116033. https://doi.org/10.1016/j.watres.2020.116033

    Article  CAS  PubMed  Google Scholar 

  75. Venegas M et al (2021) Presence and fate of micropollutants during anaerobic digestion of sewage and their implications for the circular economy: a short review. J Environ Chem Eng 9:104931. https://doi.org/10.1016/j.jece.2020.104931

    Article  CAS  Google Scholar 

  76. Hammer L, Palmowski L (2021) Fate of selected organic micropollutants during anaerobic sludge digestion. Water Environ Res 93:1910–1924. https://doi.org/10.1002/wer.1603

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, M., Aminabhavi, T.M., V. Costa, M.E., Ul Islam, S., Appels, L., Dewil, R. (2023). Pharmaceutically Active Compounds in Anaerobic Digestion Processes—Biodegradation and Fate. In: Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20806-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20806-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20805-8

  • Online ISBN: 978-3-031-20806-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics