Skip to main content

Heterogeneous Advanced Oxidation Processes (HE-AOPs) for the Removal of Pharmaceutically Active Compounds—Pros and Cons

  • Chapter
  • First Online:
Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Abstract

The release and presence of pharmaceutically active compounds (PhACs) in water bodies has created concerns in terms of ecological and health considerations. Hence, various biological and physico/chemical treatment methods have been developed to address these pollutants. Advanced oxidation processes (AOPs) are based on the generation of reactive species in the medium with the ability to decompose complex organic compounds, including PhACs. Such techniques are generally divided into homogenous (HO-AOPs) and heterogeneous (HE-AOPs) systems and can be further classified based on the need for an external source of energy into energy-free and energy-intensive AOPs. This chapter has aimed to assess the applicability of heterogeneous advanced oxidation processes (HE-AOPs) for the removal of PhACs from (waste)waters, including catalytic ozonation, activation of oxidation agents using heterogeneous catalysts, and photocatalytic and electrophotocatalytic techniques. The mechanisms involved in the HE-AOPs for the removal of PhACs have also been discussed, and the need for further studies has been highlighted in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such as N-doped or N-rich carbonaceous materials.

  2. 2.

    Homogenous AOPs have been discussed in Chap. 10.

  3. 3.

    See Chap. 9 for various mechanisms involved in the adsorption of the pollutants by carbonaceous materials.

  4. 4.

    Such as FTO/BiVO4/Ag2S heterojunction anode which has been used efficiently for the ciprofloxacin and sulfamethoxazole (80% and 86%, respectively) [121].

References

  1. da Silva SW et al (2021) Advanced electrochemical oxidation processes in the treatment of pharmaceutical containing water and wastewater: a review. Curr Pollut Rep 7(2):146–159. https://doi.org/10.1007/s40726-021-00176-6

    Article  CAS  Google Scholar 

  2. Von Sonntag C (2008) Advanced oxidation processes: mechanistic aspects. Water Sci Technol 58(5):1015–1021. https://doi.org/10.2166/wst.2008.467

    Article  CAS  Google Scholar 

  3. Issaka E et al (2022) Advanced catalytic ozonation for degradation of pharmaceutical pollutants—a review. Chemosphere 289:133208. https://doi.org/10.1016/j.chemosphere.2021.133208

    Article  CAS  PubMed  Google Scholar 

  4. Bagheri S, Termehyousefi A, Do TO (2017) Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catal Sci Technol Royal Soc Chem 7:4548–4569. https://doi.org/10.1039/c7cy00468k

    Article  CAS  Google Scholar 

  5. Chair K et al (2017) Combining bioadsorption and photoelectrochemical oxidation for the treatment of soil-washing effluents polluted with herbicide 2,4-D. J Chem Technol Biotechnol 92:83–89. https://doi.org/10.1002/jctb.5001

    Article  CAS  Google Scholar 

  6. Zhou Z et al (2019) Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chem Eng J 372:836–851. https://doi.org/10.1016/j.cej.2019.04.213

    Article  CAS  Google Scholar 

  7. Clarizia L et al (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B 209:358–371. https://doi.org/10.1016/j.apcatb.2017.03.011

    Article  CAS  Google Scholar 

  8. Guo Y et al (2018) Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. Water Res 142:383–395. https://doi.org/10.1016/j.watres.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  9. Khan MH, Jung JY (2008) Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere 72:690–696. https://doi.org/10.1016/j.chemosphere.2008.02.037

    Article  CAS  Google Scholar 

  10. Luz I, Llabrés i Xamena FX, Corma A (2012) Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. J Catal 285:285–291

    Google Scholar 

  11. Guo Y, Yang L, Wang X (2012) The application and reaction mechanism of catalytic ozonation in water treatment. J Environ Anal Toxicol 02(06). https://doi.org/10.4172/2161-0525.1000150

  12. Qin H et al (2014) Efficient degradation of fulvic acids in water by catalytic ozonation with CeO2/AC. J Chem Technol Biotechnol 89(9):1402–1409. https://doi.org/10.1002/jctb.4222

    Article  CAS  Google Scholar 

  13. Koricic K et al (2016) Mineralization of salicylic acid in water by catalytic ozonation. Environ Eng Manag J 15:4597

    Google Scholar 

  14. Mao L et al (2018) Plasma-catalyst hybrid reactor with CeO2/Γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction. J Hazard Mater 347:150–159. https://doi.org/10.1016/j.jhazmat.2017.12.064

    Article  CAS  PubMed  Google Scholar 

  15. Li X et al (2018) Relationship between the structure of Fe-MCM-48 and its activity in catalytic ozonation for diclofenac mineralization. Chemosphere 206:615–621. https://doi.org/10.1016/j.chemosphere.2018.05.066

    Article  CAS  PubMed  Google Scholar 

  16. Xu Y et al (2019) Mechanism and kinetics of catalytic ozonation for elimination of organic compounds with spinel-type CuAl2O4 and its precursor. Sci Total Environ 651:2585–2596. https://doi.org/10.1016/j.scitotenv.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Tian SQ et al (2021) Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar. Water Res 193:116860. https://doi.org/10.1016/j.watres.2021.116860

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z et al (2020) ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chem Eng J 392:124851. https://doi.org/10.1016/j.cej.2020.124851

    Article  CAS  Google Scholar 

  19. Collivignarelli MC et al (2021) Wastewater treatment plants effluents: photoelectrocatalysis vs. Water 13:821

    Google Scholar 

  20. Rashid R et al (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res 28:9050–9066. https://doi.org/10.1007/s11356-021-12395-x

    Article  CAS  Google Scholar 

  21. Harshiny M et al (2017) Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell. Int J Hydrogen Energy 42:26488–26495. https://doi.org/10.1016/j.ijhydene.2017.07.084

    Article  CAS  Google Scholar 

  22. Wang J et al (2016) Magnetic lanthanide oxide catalysts: an application and comparison in the heterogeneous catalytic ozonation of diethyl phthalate in aqueous solution. Sep Purif Technol 159:57–67. https://doi.org/10.1016/j.seppur.2015.12.031

    Article  CAS  Google Scholar 

  23. Wang J, Chen H (2020) Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Sci Total Environ 704:135249. https://doi.org/10.1016/j.scitotenv.2019.135249

    Article  CAS  PubMed  Google Scholar 

  24. Li R et al (2015) Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem Eng J 264:587–594. https://doi.org/10.1016/j.cej.2014.11.128

    Article  CAS  Google Scholar 

  25. Wang W et al (2020) Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration. Chemosphere 250:126177. https://doi.org/10.1016/j.chemosphere.2020.126177

    Article  CAS  PubMed  Google Scholar 

  26. Koba O, Biro L (2015) Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ Toxicol Pharmacol 9:483–488. https://doi.org/10.1016/j.etap.2014.12.016

  27. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572. https://doi.org/10.1016/j.jece.2013.10.011

    Article  CAS  Google Scholar 

  28. Wu J et al (2020) Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Sep Purif Technol 239:116534. https://doi.org/10.1016/j.seppur.2020.116534

    Article  CAS  Google Scholar 

  29. Diao Z-H et al (2016) Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions. Chem Eng J 302:213–222. https://doi.org/10.1016/j.cej.2016.05.062

    Article  CAS  Google Scholar 

  30. Lin Y et al (2014) Decoloration of acid violet red B by bentonite-supported nanoscale zero-valent iron: reactivity, characterization, kinetics and reaction pathway. Appl Clay Sci 93–94:56–61. https://doi.org/10.1016/j.clay.2014.02.020

    Article  CAS  Google Scholar 

  31. Wang S et al (2019) Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review. J Hazard Mater 373:820–834. https://doi.org/10.1016/j.jhazmat.2019.03.080

    Article  CAS  PubMed  Google Scholar 

  32. De Andrade JR et al (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57:3103–3127. https://doi.org/10.1021/acs.iecr.7b05137

    Article  CAS  Google Scholar 

  33. Hartmann M, Keller H (2010) Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J Mater Chem 20:9002–9017. https://doi.org/10.1039/c0jm00577k

    Article  CAS  Google Scholar 

  34. Lin SS, Gurol MD (1998) Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ Sci Technol 32(10):1417–1423. https://doi.org/10.1021/es970648k

    Article  CAS  Google Scholar 

  35. Cong Y et al (2012) Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chem Eng J 191:356–363

    Article  CAS  Google Scholar 

  36. Sun SP et al (2014) Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid. Chem Eng J 244:44–49. https://doi.org/10.1016/j.cej.2014.01.039

    Article  CAS  Google Scholar 

  37. Ulloa-Ovares D et al (2021) Simultaneous degradation of pharmaceuticals in fixed and fluidized bed reactors using iron-modified diatomite as heterogeneous Fenton catalyst. Process Saf Environ Prot 152:97–107. https://doi.org/10.1016/j.psep.2021.05.032

    Article  CAS  Google Scholar 

  38. Lan Y et al (2020) Feasibility of a heterogeneous Fenton membrane reactor containing a Fe-ZSM5 catalyst for pharmaceuticals degradation: membrane fouling control and long-term stability. Sep Purif Technol 231:115920. https://doi.org/10.1016/j.seppur.2019.115920

    Article  CAS  Google Scholar 

  39. Chang H et al (2017) Hydraulic backwashing for low-pressure membranes in drinking water treatment: a review. J Membr Sci 540:362–380. https://doi.org/10.1016/j.memsci.2017.06.077

    Article  CAS  Google Scholar 

  40. Lee J, Von Gunten U, Kim JH (2020) Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol 54:3064–3081. https://doi.org/10.1021/acs.est.9b07082

    Article  CAS  PubMed  Google Scholar 

  41. Nidheesh PV, Rajan R (2016) ‘Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Adv Royal Society of Chemistry 6:5330–5340. https://doi.org/10.1039/c5ra19987e

    Article  CAS  Google Scholar 

  42. Evseev AK et al (2008) Electrochemical synthesis of peroxodisulfates from dilute sulfate solutions for detoxification of biological media. Russ J Electrochem 44:901–909. https://doi.org/10.1134/S1023193508080041

    Article  CAS  Google Scholar 

  43. He X et al (2014) Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation. J Hazard Mater 279:375–383. https://doi.org/10.1016/j.jhazmat.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  44. Wang X et al (2014) Degradation of acid orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Sep Purif Technol 122:41–46. https://doi.org/10.1016/j.seppur.2013.10.037

    Article  CAS  Google Scholar 

  45. Du X et al (2017) Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals. Chem Eng J 313:1023–1032. https://doi.org/10.1016/j.cej.2016.10.138

    Article  CAS  Google Scholar 

  46. Sabri M et al (2021) Titania-activated persulfate for environmental remediation: the-state-of-the-art. Catal Rev Sci Eng 00:1–56. https://doi.org/10.1080/01614940.2021.1996776

    Article  CAS  Google Scholar 

  47. Kamali M, Persson KM et al (2019) Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook. Environ Int 125:261–276. https://doi.org/10.1016/j.envint.2019.01.055

    Article  CAS  PubMed  Google Scholar 

  48. Kumar A et al (2021) Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators. Appl Catal B 284:119808. https://doi.org/10.1016/j.apcatb.2020.119808

    Article  CAS  Google Scholar 

  49. Wei T et al (2022) Au tailored on g-C3N4/TiO2 heterostructure for enhanced photocatalytic performance. J Alloy Compd 894:162338. https://doi.org/10.1016/j.jallcom.2021.162338

    Article  CAS  Google Scholar 

  50. Kim DG, Ko SO (2020) Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical. Chem Eng J 399:125377. https://doi.org/10.1016/j.cej.2020.125377

    Article  CAS  Google Scholar 

  51. Minh TD et al (2019) Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants. Appl Catal B 244:367–384. https://doi.org/10.1016/j.apcatb.2018.11.064

    Article  CAS  Google Scholar 

  52. Cai S et al (2021) Pyrrolic N-rich biochar without exogenous nitrogen doping as a functional material for bisphenol A removal: performance and mechanism. Appl Catal B 291:1–10. https://doi.org/10.1016/j.apcatb.2021.120093

    Article  MathSciNet  CAS  Google Scholar 

  53. Ren W et al (2020) The intrinsic nature of persulfate activation and N-doping in carbocatalysis. Environ Sci Technol 54:6438–6447. https://doi.org/10.1021/acs.est.0c01161

    Article  CAS  PubMed  Google Scholar 

  54. Wang H et al (2019) Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism. Water Res 160:405–414. https://doi.org/10.1016/j.watres.2019.05.059

    Article  CAS  PubMed  Google Scholar 

  55. Tang Q, Zhou Z, Chen Z (2013) Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5:4541–4583. https://doi.org/10.1039/c3nr33218g

    Article  CAS  PubMed  Google Scholar 

  56. Deniere E et al (2018) Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process: the role of different oxidative species. J Hazard Mater 360:204–213. https://doi.org/10.1016/j.jhazmat.2018.07.071

    Article  CAS  PubMed  Google Scholar 

  57. Du X et al (2019) Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: reduced graphene oxide-assisted and CuO. Chem Eng J 356(August 2018):178–189. https://doi.org/10.1016/j.cej.2018.08.216

    Article  CAS  Google Scholar 

  58. Xing S et al (2020) Removal of ciprofloxacin by persulfate activation with CuO: a pH- dependent mechanism. Chem Eng J 382:122837. https://doi.org/10.1016/j.cej.2019.122837

    Article  CAS  Google Scholar 

  59. Tang H et al (2019) Promotion of peroxydisulfate activation over Cu0.84Bi2.08O4 for visible light induced photodegradation of ciprofloxacin in water matrix. Chem Eng J 356:472–482. https://doi.org/10.1016/j.cej.2018.09.066

    Article  CAS  Google Scholar 

  60. Lee Y et al (2016) Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochem 31:499–505. https://doi.org/10.1016/j.ultsonch.2016.01.030

    Article  CAS  Google Scholar 

  61. Djaballah ML et al (2021) Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. J Photochem Photobiol, A 408:113102. https://doi.org/10.1016/j.jphotochem.2020.113102

    Article  CAS  Google Scholar 

  62. Zong Y et al (2021) Enhanced oxidation of organic contaminants by Iron(II)-activated periodate: the significance of high-valent iron-oxo species. Environ Sci Technol 55:7634–7642. https://doi.org/10.1021/acs.est.1c00375

    Article  CAS  PubMed  Google Scholar 

  63. Hamdaoui O, Merouani S (2017) Improvement of sonochemical degradation of Brilliant blue R in water using periodate ions: implication of iodine radicals in the oxidation process. Ultrasonics Sonochem 37:344–350. https://doi.org/10.1016/j.ultsonch.2017.01.025

    Article  CAS  Google Scholar 

  64. Heger D, Kim K, Kim J (2018) Activation of periodate by freezing for the degradation of aqueous organic pollutants. Environ Sci Technol 52:5378−5385. https://doi.org/10.1021/acs.est.8b00281

  65. Mohammadi AMS et al (2016) Oxidation of phenol from synthetic wastewater by a novel advance oxidation process: microwave-assisted periodate. J Sci Ind Res 75:267–272

    CAS  Google Scholar 

  66. Zhang X et al (2021) Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/IO4-process. Sci Total Environ 782:146781. https://doi.org/10.1016/j.scitotenv.2021.146781

    Article  CAS  PubMed  Google Scholar 

  67. Li X et al (2016) Activation of periodate by granular activated carbon for acid orange 7 decolorization. J Taiwan Inst Chem Eng 68:211–217. https://doi.org/10.1016/j.jtice.2016.08.039

    Article  CAS  Google Scholar 

  68. Shao P et al (2018) Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants. Foundations 28:1705295

    Google Scholar 

  69. He L et al (2022) Fe, N-doped carbonaceous catalyst activating periodate for micropollutant removal: significant role of electron transfer. Appl Catal B: Environ. 303:120880. https://doi.org/10.1016/j.apcatb.2021.120880

  70. Long Y et al (2021) Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ Sci Technol 55(8):5357–5370. https://doi.org/10.1021/acs.est.0c07794

    Article  CAS  PubMed  Google Scholar 

  71. Li X et al (2017) Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation. Chemosphere 181:609–618. https://doi.org/10.1016/j.chemosphere.2017.04.134

    Article  CAS  PubMed  Google Scholar 

  72. Xiao P et al (2022) Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J Hazard Mater 424:127692. https://doi.org/10.1016/j.jhazmat.2021.127692

    Article  CAS  PubMed  Google Scholar 

  73. Ouyang D et al (2019) Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important role of biochar defect structures. Chem Eng J 370:614–624. https://doi.org/10.1016/j.cej.2019.03.235

    Article  CAS  Google Scholar 

  74. Buxton GV et al (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. J Phys Chem Ref Data 17:513–886. https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  75. Mertens R, von Sonntag C (1995) Photolysis (λ = 354 nm of tetrachloroethene in aqueous solutions. J Photochem Photobiol, A 85:1–9. https://doi.org/10.1016/1010-6030(94)03903-8

    Article  CAS  Google Scholar 

  76. Zhou Y et al (2020) Kinetics and pathways of the degradation of PPCPs by carbonate radicals in advanced oxidation processes. Water Res 185:116231. https://doi.org/10.1016/j.watres.2020.116231

    Article  CAS  PubMed  Google Scholar 

  77. Guo Y et al (2022) Photodegradation of propranolol in surface waters: an important role of carbonate radical and enhancing toxicity phenomenon. Chemosphere 297:134106. https://doi.org/10.1016/j.chemosphere.2022.134106

    Article  CAS  PubMed  Google Scholar 

  78. Karthik KV et al (2022) Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287:132081. https://doi.org/10.1016/j.chemosphere.2021.132081

    Article  CAS  PubMed  Google Scholar 

  79. Zheng H et al (2021) In situ phase evolution of TiO2/Ti3C2Tx heterojunction for enhancing adsorption and photocatalytic degradation. Appl Surf Sci 545:149031. https://doi.org/10.1016/j.apsusc.2021.149031

    Article  CAS  Google Scholar 

  80. Zyoud AH et al (2020) Raw clay supported ZnO nanoparticles in photodegradation of 2-chlorophenol under direct solar radiations. J Environ Chem Eng 8(5):104227. https://doi.org/10.1016/j.jece.2020.104227

    Article  CAS  Google Scholar 

  81. Al-Mamun MR et al (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7:103248. https://doi.org/10.1016/j.jece.2019.103248

    Article  CAS  Google Scholar 

  82. Sharma M et al (2022) TiO2 based photocatalysis: a valuable approach for the removal of pharmaceuticals from aquatic environment. Int J Environ Sci Technol, https://doi.org/10.1007/s13762-021-03894-y, https://doi.org/10.1007/s13762-021-03894-y

  83. Gomez-Ruiz B et al (2018) Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2–rGO catalyst. J Hazard Mater 344:950–957. https://doi.org/10.1016/j.jhazmat.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  84. Oves M et al (2020) Modern age waste water problems. Modern Age Waste Water Problems. https://doi.org/10.1007/978-3-030-08283-3

    Article  Google Scholar 

  85. Asif AH, Wang S, Sun H (2021) Hematite-based nanomaterials for photocatalytic degradation of pharmaceuticals and personal care products (PPCPs): a short review. Curr Opin Green Sustain Chem 28:100447. https://doi.org/10.1016/j.cogsc.2021.100447

    Article  CAS  Google Scholar 

  86. Javaid A et al (2022) Nanohybrids-assisted photocatalytic removal of pharmaceutical pollutants to abate their toxicological effects—a review. Chemosphere 291:133056. https://doi.org/10.1016/j.chemosphere.2021.133056

    Article  CAS  PubMed  Google Scholar 

  87. Awfa D et al (2018) Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature. Water Res 142:26–45. https://doi.org/10.1016/j.watres.2018.05.036

    Article  CAS  PubMed  Google Scholar 

  88. Isari AA et al (2020) N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: an effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem Eng J 392:123685. https://doi.org/10.1016/j.cej.2019.123685

    Article  CAS  Google Scholar 

  89. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  90. Wang X et al (2013) Roles of (001) and (101) facets of anatase TiO2 in photocatalytic reactions. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica 29:1566–1571. https://doi.org/10.3866/PKU.WHXB201304284

    Article  CAS  Google Scholar 

  91. Mestre AS, Carvalho AP (2019) Photocatalytic degradation of pharmaceuticals wastewater. Molecules 24:3702. Available at: https://www.mdpi.com/1420-3049/24/20/3702/pdf

  92. Lin L, Wang H, Xu P (2017) Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chem Eng J 310:389–398. https://doi.org/10.1016/j.cej.2016.04.024

    Article  CAS  Google Scholar 

  93. Sayadi MH, Sobhani S, Shekari H (2019) Photocatalytic degradation of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites. J Clean Prod 232:127–136. https://doi.org/10.1016/j.jclepro.2019.05.338

    Article  CAS  Google Scholar 

  94. Tao L et al (2022) Photocatalytic degradation of pharmaceuticals by pore-structured graphitic carbon nitride with carbon vacancy in water: identification of intermediate degradants and effects of active species. Sci Total Environ 824:153845. https://doi.org/10.1016/j.scitotenv.2022.153845

    Article  CAS  PubMed  Google Scholar 

  95. Wang Y et al (2020) Mechanism insight into enhanced photodegradation of pharmaceuticals and personal care products in natural water matrix over crystalline graphitic carbon nitrides. Water Res 180:115925. https://doi.org/10.1016/j.watres.2020.115925

    Article  CAS  PubMed  Google Scholar 

  96. Wang Y et al (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326–8339. https://doi.org/10.1039/c3nr01577g

    Article  CAS  PubMed  Google Scholar 

  97. Kumar S et al (2020) Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catal Rev Sci Eng 62:346–405. https://doi.org/10.1080/01614940.2019.1684649

    Article  CAS  Google Scholar 

  98. Xu Q et al (2020) S-scheme heterojunction photocatalyst. Chemistry 6:1543–1559. https://doi.org/10.1016/j.chempr.2020.06.010

  99. Yan H et al (2019) Single-source-precursor-assisted synthesis of porous WO3/g-C3N4 with enhanced photocatalytic property. Colloids Surf, A 582:123857. https://doi.org/10.1016/j.colsurfa.2019.123857

    Article  CAS  Google Scholar 

  100. Hu Z et al (2019) Construction of carbon-doped supramolecule-based g-C3N4/TiO2 composites for removal of diclofenac and carbamazepine: a comparative study of operating parameters, mechanisms, degradation pathways. J Hazard Mater 380:120812. https://doi.org/10.1016/j.jhazmat.2019.120812

    Article  CAS  PubMed  Google Scholar 

  101. Li C et al (2022) Graphene-based photocatalytic nanocomposites used to treat pharmaceutical and personal care product wastewater: a review. Environ Sci Pollut Res https://doi.org/10.1007/s11356-022-19469-4, https://doi.org/10.1007/s11356-022-19469-4

  102. Hager I, Golonka A, Putanowicz R (2016) 3D printing of buildings and building components as the future of sustainable construction? Procedia Eng 151:292–299. https://doi.org/10.1016/j.proeng.2016.07.357

    Article  Google Scholar 

  103. Distler T, Boccaccini AR (2020) 3D printing of electrically conductive hydrogels for tissue engineering and biosensors—a review. Acta Biomater 101:1–13. https://doi.org/10.1016/j.actbio.2019.08.044

    Article  CAS  PubMed  Google Scholar 

  104. Surmen HK, Ortes F, Arslan YZ (2020) Fundamentals of 3D printing and its applications in biomedical engineering, pp 23–41. https://doi.org/10.1007/978-981-15-5424-7_2

  105. Chen Y et al (2022) Improving 3D/4D printing characteristics of natural food gels by novel additives: a review. Food Hydrocolloids 123(July 2021):107160. https://doi.org/10.1016/j.foodhyd.2021.107160

    Article  CAS  Google Scholar 

  106. Arbaoui Y et al (2016) Full 3-D printed microwave termination: a simple and low-cost solution. IEEE Trans Microw Theory Tech 64:271–278

    Article  Google Scholar 

  107. Wang X et al (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  108. Bian B et al (2018) 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 44:174–180. https://doi.org/10.1016/j.nanoen.2017.11.070

    Article  CAS  Google Scholar 

  109. Jayapiriya US, Goel S (2021) Influence of cellulose separators in coin-sized 3D printed paper-based microbial fuel cells. Sustain Energy Technol Assess 47:101535. https://doi.org/10.1016/j.seta.2021.101535

    Article  Google Scholar 

  110. Philamore H et al (2015) Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. J Power Sources 289:91–99. https://doi.org/10.1016/j.jpowsour.2015.04.113

    Article  CAS  Google Scholar 

  111. Theodosiou P, Greenman J, Ieropoulos IA (2020) Developing 3D-printable cathode electrode for monolithically printed microbial fuel cells (MFCs). Molecules 25:25163635. https://doi.org/10.3390/molecules25163635

    Article  CAS  Google Scholar 

  112. Kumbhakar P et al (2021) Quantifying instant water cleaning efficiency using zinc oxide decorated complex 3D printed porous architectures. J Hazard Mater 418:126383. https://doi.org/10.1016/j.jhazmat.2021.126383

    Article  CAS  PubMed  Google Scholar 

  113. Murgolo S et al (2021) Novel TiO2-based catalysts employed in photocatalysis and photoelectrocatalysis for effective degradation of pharmaceuticals (PhACs) in water: a short review. Curr Opin Green Sustain Chem 30:100473. https://doi.org/10.1016/j.cogsc.2021.100473

    Article  CAS  Google Scholar 

  114. Saratale RG et al (2018) Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of reactive green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer). J Environ Manage 223:1086–1097. https://doi.org/10.1016/j.jenvman.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  115. Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol, C 31:1–35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  116. Kawrani S et al (2020) Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chem Eng J 389:124326. https://doi.org/10.1016/j.cej.2020.124326

    Article  CAS  Google Scholar 

  117. Daghrir R, Drogui P, Robert D (2012) Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol, A 238:41–52. https://doi.org/10.1016/j.jphotochem.2012.04.009

    Article  CAS  Google Scholar 

  118. Umukoro EH et al (2017) Towards wastewater treatment: photo-assisted electrochemical degradation of 2-nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chem Eng J 317:290–301. https://doi.org/10.1016/j.cej.2017.02.084

    Article  CAS  Google Scholar 

  119. Zhang M et al (2015) Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination. J Alloys Compd. 648:719–725. https://doi.org/10.1016/j.jallcom.2015.07.026

  120. Ma QL et al (2015) Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity. Appl Surf Sci 324:842–848. https://doi.org/10.1016/j.apsusc.2014.11.054

    Article  CAS  Google Scholar 

  121. Orimolade BO, Arotiba OA (2020) Towards visible light driven photoelectrocatalysis for water treatment: application of a FTO/BiVO4/Ag2S heterojunction anode for the removal of emerging pharmaceutical pollutants. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-62425-w

    Article  CAS  Google Scholar 

  122. Feng J et al (2019) Liquid phase deposition of nickel-doped ZnO film with enhanced visible light photoelectrocatalytic activity. J Electrochem Soc 166:H685–H690. https://doi.org/10.1149/2.0361914jes

    Article  CAS  Google Scholar 

  123. Orimolade BO et al (2019) Visible light driven photoelectrocatalysis on a FTO/BiVO4/BiOI anode for water treatment involving emerging pharmaceutical pollutants. Electrochim Acta 307:285–292. https://doi.org/10.1016/j.electacta.2019.03.217

    Article  CAS  Google Scholar 

  124. Najem M et al (2020) Palladium/carbon nanofibers by combining atomic layer deposition and electrospinning for organic pollutant degradation. Materials 13:1–18. https://doi.org/10.3390/MA13081947

    Article  Google Scholar 

  125. Wang J et al (2016) Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int J Hydrogen Energy 41:18044–18049. https://doi.org/10.1016/j.ijhydene.2016.08.058

    Article  CAS  Google Scholar 

  126. Nada AA et al (2021) Photoelectrocatalysis of paracetamol on Pd–ZnO/N-doped carbon nanofibers electrode. Appl Mater Today 24:101129. https://doi.org/10.1016/j.apmt.2021.101129

    Article  Google Scholar 

  127. Kondalkar VV et al (2014) Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode: identification of the degradation products and determination of the toxicity level. Ind Eng Chem Res 53:18152–18162. https://doi.org/10.1021/ie501821a

    Article  CAS  Google Scholar 

  128. Martínez-Pachón D, Echeverry-Gallego RA, Serna-Galvis EA, Villarreal JM, Botero-Coy AM, Hernández F, Torres-Palma RA, Moncayo-Lasso A (2021) Treatment of wastewater effluents from Bogotá–Colombia by the photo-electro-Fenton process: elimination of bacteria and pharmaceutical. Sci Total Environ 772: 144890. https://doi.org/10.1016/j.scitotenv.2020.144890

  129. Matteis VD et al (2016) Toxicology in vitro toxicity assessment of anatase and rutile titanium dioxide nanoparticles: the role of degradation in different pH conditions and light exposure. Toxicol In Vitro 37:201–210. https://doi.org/10.1016/j.tiv.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  130. Nogueira V et al (2020) Evaluation of the toxicity of nickel nanowires to freshwater organisms at concentrations and short-term exposures compatible with their application in water treatment. Aquat Toxicol 227:105595. https://doi.org/10.1016/j.aquatox.2020.105595

    Article  CAS  PubMed  Google Scholar 

  131. Ribeiro F et al (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232–241. https://doi.org/10.1016/j.scitotenv.2013.06.101

    Article  CAS  PubMed  Google Scholar 

  132. Agustina TE, Ang HM, Vareek VK (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol, C 6:264–273. https://doi.org/10.1016/j.jphotochemrev.2005.12.003

    Article  CAS  Google Scholar 

  133. Beltrán FJ et al (2012) Kinetic studies on black light photocatalytic ozonation of diclofenac and sulfamethoxazole in water. Ind Eng Chem Res 51:4533–4544. https://doi.org/10.1021/ie202525f

    Article  CAS  Google Scholar 

  134. Sein MM et al (2008) Oxidation of diclofenac with ozone in aqueous solution. Environ Sci Technol 42:6656–6662. https://doi.org/10.1021/es8008612

    Article  CAS  PubMed  Google Scholar 

  135. Of D et al (1999) degradation of nitrogen containing organic compounds by combined photocatalysis and ozonation. Chemosphere 38:2013–2027

    Article  Google Scholar 

  136. Sánchez L, Peral J, Domènech X (1998) Aniline degradation by combined photocatalysis and ozonation. Appl Catal B 19:59–65. https://doi.org/10.1016/S0926-3373(98)00058-7

    Article  Google Scholar 

  137. Ye M et al (2009) Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene. J Hazard Mater 167:1021–1027. https://doi.org/10.1016/j.jhazmat.2009.01.091

    Article  CAS  PubMed  Google Scholar 

  138. Paucar NE et al (2019) Ozone treatment process for the removal of pharmaceuticals and personal care products in wastewater. Ozone Sci Eng 41:3–16. https://doi.org/10.1080/01919512.2018.1482456

    Article  CAS  Google Scholar 

  139. Gomes J et al (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283. https://doi.org/10.1016/j.scitotenv.2017.01.216

    Article  CAS  PubMed  Google Scholar 

  140. Mirzaei A et al (2016) Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustain Cities Soc 27:407–418. https://doi.org/10.1016/j.scs.2016.08.004

    Article  Google Scholar 

  141. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    Article  CAS  PubMed  Google Scholar 

  142. Gao Y et al (2020) Activated persulfate by iron-based materials used for refractory organics degradation: a review. Water Sci Technol 81:853–875. https://doi.org/10.2166/wst.2020.190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, M., Aminabhavi, T.M., V. Costa, M.E., Ul Islam, S., Appels, L., Dewil, R. (2023). Heterogeneous Advanced Oxidation Processes (HE-AOPs) for the Removal of Pharmaceutically Active Compounds—Pros and Cons. In: Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20806-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20806-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20805-8

  • Online ISBN: 978-3-031-20806-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics