Skip to main content

Homogeneous Advanced Oxidation Processes for the Removal of Pharmaceutically Active Compounds—Current Status and Research Gaps

  • Chapter
  • First Online:
Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Abstract

Advanced oxidation processes (AOPs) have been considered in recent decades as efficient techniques for the efficient removal of recalcitrant and nonbiodegradable organic compounds from polluted (waste)waters. The basis of these methods is the generation of powerful oxidation agents in the medium to attack the target pollutants. Such methods can be divided into homogenous and heterogeneous AOPs. This chapter aims to explore the applicability of homogeneous AOPs (HO-AOPs), including both energy-free and energy-intensive HO-AOPs, for the elimination of pharmaceutically active compounds (PhACs) from the containing streams. The involved mechanisms as well as the outlook for future studies have also been discussed to promote the application of such technologies for the efficient removal of PhACs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    N,N-Diethyl-meta-toluamide.

  2. 2.

    Heterogeneous catalytic ozonation processes have been discussed in Chap. 11.

References

  1. Kamali M et al (2022) ZnO/γ-Fe2O3/Bentonite: an efficient solar-light active magnetic photocatalyst for the degradation of pharmaceutical active compounds. Molecules 27:3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peng J et al (2019) Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. Sci Total Environ 650:2437–2445. https://doi.org/10.1016/j.scitotenv.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  3. Li J et al (2016) Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents’ influence to downstream water environment. Environ Sci Pollut Res 23:6826–6835. https://doi.org/10.1007/s11356-015-5916-2

    Article  CAS  Google Scholar 

  4. Pallares-Vega R et al (2019) Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: a cross-sectional study. Water Res 161:319–328. https://doi.org/10.1016/j.watres.2019.05.100

    Article  CAS  PubMed  Google Scholar 

  5. Diniz MS et al (2015) Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio). Sci Total Environ 505:282–289. https://doi.org/10.1016/j.scitotenv.2014.09.103

    Article  CAS  PubMed  Google Scholar 

  6. Prata JC et al (2018) Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat Toxicol 197:143–152. https://doi.org/10.1016/j.aquatox.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  7. Santos A, Veiga F, Figueiras A (2020) Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. https://doi.org/10.3390/ma13010065

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seydi E, Tabbati Y, Pourahmad J (2020) Toxicity of atenolol and propranolol on rat heart mitochondria. Drug Research 70:151–157. https://doi.org/10.1055/a-1112-7032

    Article  CAS  PubMed  Google Scholar 

  9. Awad AM et al (2019) Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep Purif Technol 228:115719. https://doi.org/10.1016/j.seppur.2019.115719

    Article  CAS  Google Scholar 

  10. Tabana L et al (2020) Adsorption of phenol from wastewater using calcined magnesium-zinc-aluminium layered double hydroxide clay. Sustainability 12:4273. https://doi.org/10.3390/su12104273

    Article  Google Scholar 

  11. Ain QU et al (2020) Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. J Hazard Mater 397:122758. https://doi.org/10.1016/j.jhazmat.2020.122758

    Article  CAS  PubMed  Google Scholar 

  12. Dolar D et al (2017) Adsorption of hydrophilic and hydrophobic pharmaceuticals on RO/NF membranes: identification of interactions using FTIR. J Appl Polym Sci 134:17–21. https://doi.org/10.1002/app.44426

    Article  CAS  Google Scholar 

  13. Qu F et al (2019) Tertiary treatment of secondary effluent using ultrafiltration for wastewater reuse: correlating membrane fouling with rejection of effluent organic matter and hydrophobic pharmaceuticals. Environ Sci Water Res Technol Royal Soc Chem 5:672–683. https://doi.org/10.1039/c9ew00022d

    Article  CAS  Google Scholar 

  14. Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol, C 31:1–35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  15. Kawrani S et al (2020) Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chem Eng J 389:124326. https://doi.org/10.1016/j.cej.2020.124326

    Article  CAS  Google Scholar 

  16. da Silva SW et al (2021) Advanced electrochemical oxidation processes in the treatment of pharmaceutical containing water and wastewater: a review. Curr Pollut Rep 7(2):146–159. https://doi.org/10.1007/s40726-021-00176-6

    Article  CAS  Google Scholar 

  17. Von Sonntag C (2008) Advanced oxidation processes: mechanistic aspects. Water Sci Technol 58(5):1015–1021. https://doi.org/10.2166/wst.2008.467

    Article  CAS  Google Scholar 

  18. Loeb BL et al (2012) Worldwide ozone capacity for treatment of drinking water and wastewater: a review. Ozone: Sci Eng J Int Ozone Assoc 9512. https://doi.org/10.1080/01919512.2012.640251

  19. Rakness KL et al (2005) Cryptosporidium log-inactivation with ozone using effluent CT10, geometric mean CT10, extended integrated CT10 and extended CSTR calculations. Ozone: Sci Eng 27(5):335–350. https://doi.org/10.1080/01919510500250267

  20. Thompson CM, Drago JA (2015) North American installed water treatment ozone systems. J Am Water Works Assoc 107(10):45–55. https://doi.org/10.5942/jawwa.2015.107.0157

    Article  Google Scholar 

  21. Brillas E (2020) A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 250:126198. https://doi.org/10.1016/j.chemosphere.2020.126198

    Article  CAS  PubMed  Google Scholar 

  22. Mei Q et al (2019) Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: mechanisms, kinetics and toxicity assessment. Chem Eng J 373(May):668–676. https://doi.org/10.1016/j.cej.2019.05.095

    Article  CAS  Google Scholar 

  23. Zhang P et al (2018) Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: surface versus aqueous reactions. Geochim Cosmochim Acta 238:394–410. https://doi.org/10.1016/j.gca.2018.07.018

    Article  CAS  Google Scholar 

  24. Battimelli A et al (2010) Combined ozone pretreatment and biological processes for removal of colored and biorefractory compounds in wastewater from molasses fermentation industries. J Chem Technol Biotechnol 85(7):968–975. https://doi.org/10.1002/jctb.2388

    Article  CAS  Google Scholar 

  25. Carini D et al (2001) Ozonation as pre-treatment step for the biological batch degradation of industrial wastewater containing 3-methyl-pyridine. Ozone: Sci Eng 23(3):189–198. https://doi.org/10.1080/01919510108962002

  26. Chávez AM et al (2019) Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs. Chem Eng J 361:89–98. https://doi.org/10.1016/j.cej.2018.12.064

    Article  CAS  Google Scholar 

  27. Kovalova L et al (2013) Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ Sci Technol 47(14):7899–7908. https://doi.org/10.1021/es400708w

    Article  CAS  PubMed  Google Scholar 

  28. Taoufik N et al (2021) Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. J Environ Manage 288:112404. https://doi.org/10.1016/j.jenvman.2021.112404

    Article  CAS  PubMed  Google Scholar 

  29. Umar M et al (2013) Application of ozone for the removal of bisphenol A from water and wastewater—a review. Chemosphere 90:2197–2207. https://doi.org/10.1016/j.chemosphere.2012.09.090

    Article  CAS  PubMed  Google Scholar 

  30. Ikehata, K et al (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Sci Eng 28:353–414. https://doi.org/10.1080/01919510600985937

  31. Yacouba ZA et al (2021) Removal of organic micropollutants from domestic wastewater: the effect of ozone-based advanced oxidation process on nanofiltration. J Water Process Eng 39:101869. https://doi.org/10.1016/j.jwpe.2020.101869

    Article  Google Scholar 

  32. Aghaeinejad-Meybodi A et al (2021) Comparative investigation on catalytic ozonation of Fluoxetine antidepressant drug in the presence of boehmite and γ-alumina nanocatalysts: operational parameters, kinetics and degradation mechanism studies. Chem Papers 75:421–430. https://doi.org/10.1007/s11696-020-01312-0

    Article  CAS  Google Scholar 

  33. Mcdowell DC et al (2005) Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products. Environ Sci Technol 39:8014–8022. https://doi.org/10.1021/es050043l

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y et al (2017) Ozonation of indomethacin: kinetics, mechanisms and toxicity. J Hazard Mater 323:460–470. https://doi.org/10.1016/j.jhazmat.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  35. Alharbi SK et al (2016) Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalin Water Treat 57:29340–29351. https://doi.org/10.1080/19443994.2016.1172986

    Article  CAS  Google Scholar 

  36. Edefell E et al (2021) MBBRs as post-treatment to ozonation: degradation of transformation products and ozone-resistant micropollutants. Sci Total Environ 754:142103. https://doi.org/10.1016/j.scitotenv.2020.142103

    Article  CAS  PubMed  Google Scholar 

  37. Mojiri A et al (2019) Combined ozone oxidation process and adsorption methods for the removal of acetaminophen and amoxicillin from aqueous solution; kinetic and optimisation. Environ Technol Innov 15:100404. https://doi.org/10.1016/j.eti.2019.100404

    Article  Google Scholar 

  38. Márquez G et al (2014) Integration of ozone and solar TiO2-photocatalytic oxidation for the degradation of selected pharmaceutical compounds in water and wastewater. Sep Purif Technol 136:18–26. https://doi.org/10.1016/j.seppur.2014.08.024

    Article  CAS  Google Scholar 

  39. Abellán MN, Gebhardt W, Schröder HF (2008) Detection and identification of degradation products of sulfamethoxazole by means of LC/MS and—MSn after ozone treatment. Water Sci Technol 58:1803–1812. https://doi.org/10.2166/wst.2008.539

    Article  CAS  PubMed  Google Scholar 

  40. Paucar NE et al (2019) Ozone treatment process for the removal of pharmaceuticals and personal care products in wastewater. Ozone: Sci Eng 41:3–16. https://doi.org/10.1080/01919512.2018.1482456

  41. Guo Y, Yang L, Wang X (2012) The application and reaction mechanism of catalytic ozonation in water treatment. J Environ Anal Toxicol 02(06). https://doi.org/10.4172/2161-0525.1000150

  42. Qin H et al (2014) Efficient degradation of fulvic acids in water by catalytic ozonation with CeO2/AC. J Chem Technol Biotechnol 89(9):1402–1409. https://doi.org/10.1002/jctb.4222

    Article  CAS  Google Scholar 

  43. Khan MH, Jung JY (2008) Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere 72:690–696. https://doi.org/10.1016/j.chemosphere.2008.02.037

    Article  CAS  Google Scholar 

  44. Zeng Z et al (2012) Ozonation of acidic phenol wastewater with O3/Fe(II) in a rotating packed bed reactor: optimization by response surface methodology. Chem Eng Process 60(Ii):1–8. https://doi.org/10.1016/j.cep.2012.06.006

  45. Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal B 99(1–2):27–42. https://doi.org/10.1016/j.apcatb.2010.06.033

    Article  CAS  Google Scholar 

  46. Koricic K et al (2016) Mineralization of salicylic acid in water by catalytic ozonation. Environ Eng Manag J 15:4597

    Google Scholar 

  47. Clarizia L et al (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B 209:358–371. https://doi.org/10.1016/j.apcatb.2017.03.011

    Article  CAS  Google Scholar 

  48. Wei Y, Li G, Wang B (2011) Research on harbor oily wastewater treatment by Fenton oxidation. Adv Mater Res 322:164–168. https://doi.org/10.4028/www.scientific.net/AMR.322.164

    Article  CAS  Google Scholar 

  49. Remucal CK, Lee C, Sedlak DL (2011) Comment on “oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction. Environ Sci Technol 45:3177–3178. https://doi.org/10.1021/es104399p

    Article  CAS  PubMed  Google Scholar 

  50. Tang J, Wang J (2018) Metal organic framework with coordinatively unsaturated sites as efficient fenton-like catalyst for enhanced degradation of sulfamethazine. Environ Sci Technol 52:5367–5377. https://doi.org/10.1021/acs.est.8b00092

    Article  CAS  PubMed  Google Scholar 

  51. Ribeiro JP, Marques CC, Nunes MI (2020) AOX removal from pulp and paper wastewater by Fenton and photo-Fenton processes: a real case-study. Energy Rep 6:770–775. https://doi.org/10.1016/j.egyr.2019.09.068

    Article  Google Scholar 

  52. Lee J, Von Gunten U, Kim JH (2020) Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol 54:3064–3081. https://doi.org/10.1021/acs.est.9b07082

    Article  CAS  PubMed  Google Scholar 

  53. Deng J et al (2013) Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chem Eng J 228:765–771. https://doi.org/10.1016/j.cej.2013.05.044

    Article  CAS  Google Scholar 

  54. Milh H et al (2020) Degradation of sulfamethoxazole by heat-activated persulfate oxidation: elucidation of the degradation mechanism and influence of process parameters. Chem Eng J 379:122234. https://doi.org/10.1016/j.cej.2019.122234

    Article  CAS  Google Scholar 

  55. Waldemer RH et al (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41:1010–1015. https://doi.org/10.1021/es062237m

    Article  CAS  PubMed  Google Scholar 

  56. Pirsaheb M, Hossaini H, Janjani H (2019) An overview on ultraviolet persulfate based advances oxidation process for removal of antibiotics from aqueous solutions: a systematic review. Desalin Water Treat 165:382–395. https://doi.org/10.5004/dwt.2019.24559

    Article  CAS  Google Scholar 

  57. Tsitonaki A et al (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91. https://doi.org/10.1080/10643380802039303

    Article  CAS  Google Scholar 

  58. Xiao S et al (2020) Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review. Chem Eng J 384:123265. https://doi.org/10.1016/j.cej.2019.123265

    Article  CAS  Google Scholar 

  59. Wu J et al (2020) Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Sep Purif Technol 239:116534. https://doi.org/10.1016/j.seppur.2020.116534

    Article  CAS  Google Scholar 

  60. Nachiappan S, Gopinath KP (2015) Treatment of pharmaceutical effluent using novel heterogeneous fly ash activated persulfate system. J Environ Chem Eng 3:2229–2235. https://doi.org/10.1016/j.jece.2015.07.019

    Article  CAS  Google Scholar 

  61. Yang Y et al (2015) Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process. Environ Sci Technol 49:73307339. https://doi.org/10.1021/es506362e

    Article  CAS  Google Scholar 

  62. Yang Y et al (2016) Degradation of bisphenol a using ozone/persulfate process: kinetics and mechanism. Water Air Soil Pollut 227:53. https://doi.org/10.1007/s11270-016-2746-x

    Article  CAS  Google Scholar 

  63. Deniere E et al (2018) Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process: the role of different oxidative species. J Hazard Mater 360:204–213. https://doi.org/10.1016/j.jhazmat.2018.07.071

    Article  CAS  PubMed  Google Scholar 

  64. Khashij M, Mehralian M, Goodarzvand Chegini Z (2020) Degradation of acetaminophen (ACT) by ozone/persulfate oxidation process: experimental and degradation pathways. Pigm Resin Technol 49:363–368. https://doi.org/10.1108/PRT-11-2019-0107

    Article  CAS  Google Scholar 

  65. Haddad T, Kümmerer K (2014) Characterization of photo-transformation products of the antibiotic drug Ciprofloxacin with liquid chromatography-tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap. Chemosphere 115:40–46. https://doi.org/10.1016/j.chemosphere.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  66. Tegze A et al (2019) Radiation induced degradation of ciprofloxacin and norfloxacin: kinetics and product analysis. Radiat Phys Chem 158:68–75. https://doi.org/10.1016/j.radphyschem.2019.01.025

    Article  CAS  Google Scholar 

  67. Alharbi SK et al (2017) ‘Photolysis and UV/H2O2 of diclofenac, sulfamethoxazole, carbamazepine, and trimethoprim: Identification of their major degradation products by ESI–LC–MS and assessment of the toxicity of reaction mixtures. Process Safety Environ Protect Instit Chem Eng 112:222–234. https://doi.org/10.1016/j.psep.2017.07.015

    Article  CAS  Google Scholar 

  68. Abrile MG et al (2021) Degradation and mineralization of the emerging pharmaceutical pollutant sildenafil by ozone and UV radiation using response surface methodology. Environ Sci Pollut Res 28:23868–23886. https://doi.org/10.1007/s11356-020-11717-9

    Article  CAS  Google Scholar 

  69. Topkaya E, Arslan A, Yatmaz HC (2021) Diclofenac degradation by ozone-based oxidation processes: PROMETHEE method kinetic and cost-effectiveness study. Ozone: Sci Eng 43:136–146. https://doi.org/10.1080/01919512.2020.1765737

    Article  CAS  Google Scholar 

  70. Farzaneh H et al (2020) Ozone and ozone/hydrogen peroxide treatment to remove gemfibrozil and ibuprofen from treated sewage effluent: factors influencing bromate formation. Emerg Contam 6:225–234. https://doi.org/10.1016/j.emcon.2020.06.002

    Article  Google Scholar 

  71. Liu Z et al (2019) Combining ozone with UV and H2O2 for the degradation of micropollutants from different origins: lab-scale analysis and optimization. Environ Technol (United Kingdom) 40:3773–3782. https://doi.org/10.1080/09593330.2018.1491630

    Article  CAS  Google Scholar 

  72. Macías-Quiroga IF et al (2021) Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environ Sci Pollut Res 28:23791–23811. https://doi.org/10.1007/s11356-020-11333-7

    Article  CAS  Google Scholar 

  73. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. https://doi.org/10.1021/cr9001319

    Article  CAS  PubMed  Google Scholar 

  74. Martínez-Huitle CA et al (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361

    Article  CAS  PubMed  Google Scholar 

  75. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340. https://doi.org/10.1039/b517632h

    Article  CAS  PubMed  Google Scholar 

  76. Dewil R et al (2017) New perspectives for advanced oxidation processes. J Environ Manage 195:93–99. https://doi.org/10.1016/j.jenvman.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  77. Marselli B et al (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79. https://doi.org/10.1149/1.1553790

    Article  CAS  Google Scholar 

  78. Simond O, Schaller V, Comninellis C (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim Acta 42:2009–2012. https://doi.org/10.1016/S0013-4686(97)85475-8

    Article  CAS  Google Scholar 

  79. Lan Y et al (2017) On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim Acta 231:309–318. https://doi.org/10.1016/j.electacta.2017.01.160

    Article  CAS  Google Scholar 

  80. Medeiros De Araújo D et al (2014) Electrochemical conversion/combustion of a model organic pollutant on BDD anode: Role of sp3/sp2 ratio. Electrochem Commun 47:37–40. https://doi.org/10.1016/j.elecom.2014.07.017

    Article  CAS  Google Scholar 

  81. da Silva SW et al (2019) Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. J Electroanal Chem 832:112–120. https://doi.org/10.1016/j.jelechem.2018.10.049

    Article  CAS  Google Scholar 

  82. Souza FL et al (2016) The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. Electrochim Acta 187:119–124. https://doi.org/10.1016/j.electacta.2015.11.031

    Article  CAS  Google Scholar 

  83. Hosseini M et al (2020) Degradation of ciprofloxacin antibiotic using photo-electrocatalyst process of Ni-doped ZnO deposited by RF sputtering on FTO as an anode electrode from aquatic environments: synthesis, kinetics, and ecotoxicity study. Microchem J 154:104663. https://doi.org/10.1016/j.microc.2020.104663

    Article  CAS  Google Scholar 

  84. Zhang G et al (2021) Efficient photoelectrocatalytic degradation of tylosin on TiO2 nanotube arrays with tunable phosphorus dopants. J Environ Chem Eng 9:104742. https://doi.org/10.1016/j.jece.2020.104742

    Article  CAS  Google Scholar 

  85. Feng L et al (2019) Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. J Environ Chem Eng 7:103400. https://doi.org/10.1016/j.jece.2019.103400

    Article  CAS  Google Scholar 

  86. Haidar M et al (2013) Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere 91:1304–1309. https://doi.org/10.1016/j.chemosphere.2013.02.058

    Article  CAS  PubMed  Google Scholar 

  87. Orimolade BO et al (2020) Coupling cathodic electro-fenton with anodic photo-electrochemical oxidation: a feasibility study on the mineralization of paracetamol. J Environ Chem Eng 8:104394. https://doi.org/10.1016/j.jece.2020.104394

    Article  CAS  Google Scholar 

  88. López-Guzmán M, Flores-Hidalgo MA, Reynoso-Cuevas L (2021) Electrocoagulation process: an approach to continuous processes, reactors design, pharmaceuticals removal, and hybrid systems—a review. Processes 9:1831. https://doi.org/10.3390/pr9101831

    Article  CAS  Google Scholar 

  89. Wang C et al (2016) Insights of ibuprofen electro-oxidation on metal-oxide-coated Ti anodes: kinetics, energy consumption and reaction mechanisms. Chemosphere 163:584–591. https://doi.org/10.1016/j.chemosphere.2016.08.057

    Article  CAS  PubMed  Google Scholar 

  90. Domínguez JR et al (2016) Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes. Environ Sci Pollut Res 23:20315–20330. https://doi.org/10.1007/s11356-016-7175-2

    Article  CAS  Google Scholar 

  91. Rabaaoui N, Allagui MS (2012) Anodic oxidation of salicylic acid on BDD electrode: variable effects and mechanisms of degradation. J Hazard Mater 243:187–192. https://doi.org/10.1016/j.jhazmat.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  92. Tu X et al (2015) Treatment of simulated berberine wastewater by electrochemical process with Pt/Ti anode. Environ Earth Sci 73:4957–4966. https://doi.org/10.1007/s12665-015-4323-9

    Article  CAS  Google Scholar 

  93. Ambuludi SL et al (2013) Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation. Environ Sci Pollut Res 20:2381–2389. https://doi.org/10.1007/s11356-012-1123-6

    Article  CAS  Google Scholar 

  94. Indermuhle C et al (2013) Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere 93:1720–1725. https://doi.org/10.1016/j.chemosphere.2013.05.047

    Article  CAS  PubMed  Google Scholar 

  95. Sifuna FW et al (2016) Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 51:954–961. https://doi.org/10.1080/10934529.2016.1191814

    Article  CAS  Google Scholar 

  96. Murugananthan M et al (2010) Anodic oxidation of ketoprofen-an anti-inflammatory drug using boron doped diamond and platinum electrodes. J Hazard Mater 180:753–758. https://doi.org/10.1016/j.jhazmat.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  97. Liu YJ, Hu CY, Lo SL (2019) Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. J Hazard Mater 366:592–605. https://doi.org/10.1016/j.jhazmat.2018.12.037

    Article  CAS  PubMed  Google Scholar 

  98. González T et al (2010) Conductive-diamond electrochemical advanced oxidation of naproxen in aqueous solution: optimizing the process. Foundations 86:121–127

    Google Scholar 

  99. Velappan K et al (2016) Anodic oxidation of isothiazolin-3-ones in aqueous medium by using boron-doped diamond electrode. Diam Relat Mater 69:152–159. https://doi.org/10.1016/j.diamond.2016.08.008

    Article  CAS  Google Scholar 

  100. Domínguez JR et al (2010) Electrochemical advanced oxidation of carbamazepine on boron-doped diamond anodes. Influence of operating variables. Ind Eng Chem Res 49:8353–8359. https://doi.org/10.1021/ie101023u

    Article  CAS  Google Scholar 

  101. Barışçı S et al (2018) Electrochemical treatment of anti-cancer drug carboplatin on mixed-metal oxides and boron doped diamond electrodes: density functional theory modelling and toxicity evaluation. J Hazard Mater 344:316–321. https://doi.org/10.1016/j.jhazmat.2017.10.029

    Article  CAS  PubMed  Google Scholar 

  102. Sun Y et al (2017) Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al2O3 particle electrodes with a three-dimensional reactor. Chem Eng J 308:1233–1242. https://doi.org/10.1016/j.cej.2016.10.072

    Article  CAS  Google Scholar 

  103. Coledam DAC et al (2016) Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochim Acta 213:856–864. https://doi.org/10.1016/j.electacta.2016.08.003

    Article  CAS  Google Scholar 

  104. Chen TS, Chen PH, Huang KL (2014) ‘Electrochemical degradation of N, N-diethyl-m-toluamide on a boron-doped diamond electrode. J Taiwan Instit Chem Eng 45:2615–2621. https://doi.org/10.1016/j.jtice.2014.06.020

    Article  CAS  Google Scholar 

  105. Díaz E et al (2019) Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode. Water Sci Technol 79:480–488. https://doi.org/10.2166/wst.2019.070

    Article  CAS  PubMed  Google Scholar 

  106. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. https://doi.org/10.1016/j.envint.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  107. Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614. https://doi.org/10.1016/j.scitotenv.2017.03.286

    Article  CAS  PubMed  Google Scholar 

  108. Rivera-Utrilla J et al (2013) Pharmaceuticals as emerging contaminants and their removal from water. a review. Chemosphere 93:1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  PubMed  Google Scholar 

  109. Feng L et al (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. a review. Chem Eng J 228:944–964. https://doi.org/10.1016/j.cej.2013.05.061

    Article  CAS  Google Scholar 

  110. Joshi M et al (2009) Chlorophyll-based photocatalysts and their evaluations for methyl orange photoreduction. J Photochem Photobiol, A 204:83–89. https://doi.org/10.1016/j.jphotochem.2009.01.016

    Article  CAS  Google Scholar 

  111. Ghasemi M et al (2020) In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J Environ Manage 267:110629. https://doi.org/10.1016/j.jenvman.2020.110629

    Article  CAS  PubMed  Google Scholar 

  112. Tian L et al (2022) Mineralization of cyanides via a novel Electro-Fenton system generating ·OH and ·O2−. Water Res 209:117890

    Article  CAS  Google Scholar 

  113. Zhang D et al (2020) Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics. Chem Eng J 383:123184. https://doi.org/10.1016/j.cej.2019.123184

    Article  CAS  Google Scholar 

  114. Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 114:326–342. https://doi.org/10.1016/j.ecoenv.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  115. De Bel E et al (2009) Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 77:291–295. https://doi.org/10.1016/j.chemosphere.2009.07.033

    Article  CAS  PubMed  Google Scholar 

  116. Locke BR et al (2006) Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res 45:882–905. https://doi.org/10.1021/ie050981u

    Article  CAS  Google Scholar 

  117. Cui Y et al (2018) The types of plasma reactors in wastewater treatment. IOP Conf Series: Earth Environ Sci 208:012002. https://doi.org/10.1088/1755-1315/208/1/012002

    Article  Google Scholar 

  118. Joshi RP, Thagard SM (2013) Streamer-like electrical discharges in water: Part II. Environmental applications. Plasma Chem Plasma Process 33:17–49. https://doi.org/10.1007/s11090-013-9436-x

    Article  CAS  Google Scholar 

  119. Jiang B et al (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368. https://doi.org/10.1016/j.cej.2013.09.090

    Article  CAS  Google Scholar 

  120. Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sour Sci Technol 10:82–91. https://doi.org/10.1088/0963-0252/10/1/311

    Article  CAS  Google Scholar 

  121. Reddy PMK, Subrahmanyam C (2012) Green approach for wastewater treatment-degradation and mineralization of aqueous organic pollutants by discharge plasma. Ind Eng Chem Res 51:11097–11103. https://doi.org/10.1021/ie301122p

    Article  CAS  Google Scholar 

  122. Wang Y et al (2014) Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone. J Environ Sci (China) 26:550–554. https://doi.org/10.1016/S1001-0742(13)60409-X

    Article  CAS  PubMed  Google Scholar 

  123. Ajo P, Kornev I, Preis S (2015) Pulsed corona discharge in water treatment: the effect of hydrodynamic conditions on oxidation energy efficiency. Ind Eng Chem Res 54:7452–7458. https://doi.org/10.1021/acs.iecr.5b01915

    Article  CAS  Google Scholar 

  124. Wang M et al (2017) ‘In situ degradation of antibiotic residues in medical intravenous infusion bottles using high energy electron beam irradiation. Sci Rep 7:1–8. https://doi.org/10.1038/srep39928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu X (2001) Dielectric barrier discharge—properties and applications. Thin Solid Films 390:237–242. https://doi.org/10.1016/S0040-6090(01)00956-7

    Article  CAS  Google Scholar 

  126. Lukes P, Locke BR, Brisset JL (2012) Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments. Plasma Chem Catal Gases Liquids (Chapter 6), pp 243–308. https://doi.org/10.1002/9783527649525.ch7

  127. Neta P (1972) Reactions of hydrogen atoms in aqueous solutions. Chem Rev 72:533–543. https://doi.org/10.1021/cr60279a005

    Article  CAS  Google Scholar 

  128. Anpilov AM et al (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D Appl Phys 34:993–999. https://doi.org/10.1088/0022-3727/34/6/322

    Article  CAS  Google Scholar 

  129. Bruggeman P et al (2008) DC electrical breakdown in a metal pin-water electrode system. IEEE Trans Plasma Sci 36:1138–1139. https://doi.org/10.1109/TPS.2008.917294

    Article  Google Scholar 

  130. Šunka P et al (2004) Potential applications of pulse electrical discharges in water. Acta Physica Slovaca 54:135–145

    Google Scholar 

  131. Bruggeman P et al (2007) Plasma characteristics in air and vapor bubbles in water. In: Proceedings International Conference on Phenomena in Ionized Gases (Prague, Czech Republic), pp 899–962. Available at: http://icpig2007.ipp.cas.cz/files/download/cd-cko/ICPIG2007/pdf/3P10-10.pdf

  132. Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl Chem 71:1819–1828. https://doi.org/10.1351/pac199971101819

    Article  CAS  Google Scholar 

  133. Stracqualursi E, Araneo R, Celozzi S (2021) The corona phenomenon in overhead lines: critical overview of most common and reliable available models. Energies 14:6612. https://doi.org/10.3390/en14206612

    Article  Google Scholar 

  134. Parvulescu VI et al (2022) recent progress and prospects in catalytic water treatment. Chem Rev 122:2981–3121. https://doi.org/10.1021/acs.chemrev.1c00527

    Article  CAS  PubMed  Google Scholar 

  135. Wang X, Zhou M, Jin X (2012) Application of glow discharge plasma for wastewater treatment. Electrochim Acta 83:501–512. https://doi.org/10.1016/j.electacta.2012.06.131

    Article  CAS  Google Scholar 

  136. Fridman A et al (1998) Gliding arc gas discharge. Prog Energy Combust Sci 25:211–231

    Article  Google Scholar 

  137. Magureanu M et al (2021) A review on non-thermal plasma treatment of water contaminated with antibiotics. J Hazard Mater 417:125481. https://doi.org/10.1016/j.jhazmat.2021.125481

    Article  CAS  PubMed  Google Scholar 

  138. Singh RK, Philip L, Ramanujam S (2017) Rapid degradation, mineralization and detoxification of pharmaceutically active compounds in aqueous solution during pulsed corona discharge treatment. Water Res 121:20–36. https://doi.org/10.1016/j.watres.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  139. Guo H et al (2019) Pulsed discharge plasma assisted with graphene-WO3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water. Chem Eng J 372:226–240. https://doi.org/10.1016/j.cej.2019.04.119

    Article  CAS  Google Scholar 

  140. He D et al (2015) Decomposition of tetracycline in aqueoussolution by corona discharge plasma combined with a Bi2MoO6 nanocatalyst. J Chem Technol Biotechnol 015:2249–2256

    Article  Google Scholar 

  141. Aggelopoulos CA et al (2020) Degradation of antibiotic enrofloxacin in water by gas-liquid nsp-DBD plasma: parametric analysis, effect of H2O2 and CaO2 additives and exploration of degradation mechanisms. Chem Eng J 398:125622. https://doi.org/10.1016/j.cej.2020.125622

    Article  CAS  Google Scholar 

  142. Xu Z et al (2020) Degradation effect and mechanism of gas-liquid phase dielectric barrier discharge on norfloxacin combined with H2O2 or Fe2+. Sep Purif Technol 230:115862. https://doi.org/10.1016/j.seppur.2019.115862

    Article  CAS  Google Scholar 

  143. Kamali M et al (2021) Nanostructured materials via green sonochemical routes e sustainability aspects. Chemosphere 276:130146. https://doi.org/10.1016/j.chemosphere.2021.130146

    Article  CAS  PubMed  Google Scholar 

  144. Miljevic B et al (2014) To sonicate or not to sonicate PM filters: reactive oxygen species generation upon ultrasonic irradiation. Aerosol Sci Technol 48:1276–1284. https://doi.org/10.1080/02786826.2014.981330

    Article  CAS  Google Scholar 

  145. Capocelli M et al (2012) Sonochemical degradation of estradiols: Incidence of ultrasonic frequency. Chem Eng J 210:9–17. https://doi.org/10.1016/j.cej.2012.08.084

    Article  CAS  Google Scholar 

  146. Huang T et al (2017) Effects and mechanism of diclofenac degradation in aqueous solution by US/Zn0. Ultrason Sonochem 37:676–685. https://doi.org/10.1016/j.ultsonch.2017.02.032

    Article  CAS  PubMed  Google Scholar 

  147. Lonappan L et al (2016) Diclofenac and its transformation products: environmental occurrence and toxicity—a review. Environ Int 96:127–138. https://doi.org/10.1016/j.envint.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  148. Reggiane de Carvalho Costa L, Guerra Pacheco Nunes K, Amaral Féris L (2021) Ultrasound as an advanced oxidative process: a review on treating pharmaceutical compounds. Chem Eng Technol 44:1744–1758. https://doi.org/10.1002/ceat.202100090

  149. Yargeau V, Danylo F (2015) Removal and transformation products of ibuprofen obtained during ozone- and ultrasound-based oxidative treatment. Water Sci Technol 72:491–500. https://doi.org/10.2166/wst.2015.234

    Article  CAS  PubMed  Google Scholar 

  150. Issaka E et al (2022) Advanced catalytic ozonation for degradation of pharmaceutical pollutants—a review. Chemosphere 289:133208. https://doi.org/10.1016/j.chemosphere.2021.133208

    Article  CAS  PubMed  Google Scholar 

  151. Gomes J et al (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283. https://doi.org/10.1016/j.scitotenv.2017.01.216

    Article  CAS  PubMed  Google Scholar 

  152. Sousa CP et al (2019) Electroanalysis of pharmaceuticals on boron-doped diamond electrodes: a review. ChemElectroChem 6:2350–2378. https://doi.org/10.1002/celc.201801742

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kamali .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamali, M., Aminabhavi, T.M., V. Costa, M.E., Ul Islam, S., Appels, L., Dewil, R. (2023). Homogeneous Advanced Oxidation Processes for the Removal of Pharmaceutically Active Compounds—Current Status and Research Gaps. In: Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20806-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20806-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20805-8

  • Online ISBN: 978-3-031-20806-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics