Skip to main content

Genetic, Epigenetic, and Environmental Influences on Fetal Alcohol Spectrum Disorder: Implications for Diagnosis, Research and Clinical Practice

  • 1140 Accesses

Abstract

Fetal Alcohol Spectrum Disorder (FASD) is a diagnostic term in the Canadian guidelines and an umbrella term in the US guidelines, that describes the broad range of adverse effects that can result from prenatal exposure to alcohol, including deficits across multiple physical, physiological, neurobiological, and behavioral domains. The prevalence of FASD is estimated to be 1.1–5.0%, which is significantly higher than that of other common disorders, including Autism Spectrum Disorder and Down Syndrome. This relatively high prevalence highlights the urgent need for better recognition, diagnosis, and treatment of this disorder. Currently, however, there are numerous challenges in obtaining an accurate and reliable diagnosis of FASD, and many children remain undiagnosed. This dilemma further highlights the need for new screening and diagnostic tools that provide sensitive biomarkers of prenatal alcohol exposure. Identification of at-risk children at a young age will allow these children access to early interventions and services, which can profoundly change the long-term outcomes and quality of life of individuals with FASD and their families. In this Chapter, we discuss the evidence supporting the emerging potential for genetic, epigenetic, transcriptomic, and proteomic approaches to elucidate FASD etiology, and to serve as potential biomarkers or signatures of early-life events, including prenatal alcohol exposure. We provide an overview of FASD and a brief history of the development of diagnostic criteria, review risk and resilience factors that impact the expression of the disorder, discuss genetic and epigenetic factors in FASD, and conclude by relating these findings to the clinical context.

Keywords

  • Prenatal alcohol exposure
  • Fetal alcohol Spectrum disorder (FASD)
  • Biomarkers
  • Risk and resilience
  • Genetics
  • Epigenetics
  • Transcriptomics and proteomics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lemoine P, Harousseau H, Borteyru J, Menuet J. Les enfants des parents alcoholiques: anomalies observées a propos de 127 cas. Ouest Médical. 1968;8:476–82.

    Google Scholar 

  2. Jones KL, Smith DW, Ulleland CN, Streissguth AP. Pattern of malformation in offspring of chronic alcoholic women. Lancet. 1973;1:1267–71.

    CrossRef  CAS  Google Scholar 

  3. Streissguth AP, et al. Natural history of the fetal alcohol syndrome: a 10-year follow-up of eleven patients. Lancet. 1985;2:85–91.

    CrossRef  CAS  Google Scholar 

  4. Norman AL, Crocker N, Mattson SN, Riley EP. Neuroimaging and fetal alcohol spectrum disorders. Dev Disabil Res Rev. 2009;15:209–17.

    CrossRef  Google Scholar 

  5. Crocker N, Nguyen TT, Mattson SN. Fetal alcohol spectrum disorders: neuropsychological and behavioral features. Neuropsychol Rev. 2011;21:81–101.

    CrossRef  Google Scholar 

  6. Floyd, R. Fetal alcohol syndrome: guidelines for referral and diagnosis. (2005).

    Google Scholar 

  7. Benz J, Rasmussen C, Andrew G. Diagnosing fetal alcohol spectrum disorder: history, challenges and future directions. Paediatr Child Health. 2009;14:231–7.

    CrossRef  Google Scholar 

  8. Fox SE, Levitt P, Nelson CA III. How the timing and quality of early experiences influence the development of brain architecture. Child Dev. 2010;81:28–40.

    CrossRef  Google Scholar 

  9. Paley B, O’Connor MJ. Behavioral interventions for children and adolescents with fetal alcohol Spectrum disorders. Alcohol Res Heal. 2011;34:64–75.

    Google Scholar 

  10. Streissguth AP, et al. Risk factors for adverse life outcomes in fetal alcohol syndrome and fetal alcohol effects. J Dev Behav Pediatr. 2004;25:228–38.

    CrossRef  Google Scholar 

  11. May PA, et al. Prevalence of fetal alcohol Spectrum disorders in 4 US communities. JAMA. 2018;319:474–82.

    CrossRef  Google Scholar 

  12. Xu G, Strathearn L, Liu B, Bao W. Prevalence of autism Spectrum disorder among US children and adolescents, 2014-2016 Prevalence of autism Spectrum disorder among US children and adolescents, 2014-2016 Letters. JAMA. 2018;319:81–2.

    CrossRef  Google Scholar 

  13. de Graaf G, Buckley F, Dever J, Skotko BG. Estimation of live birth and population prevalence of down syndrome in nine U.S. states. Am J Med Genet Part A. 2017;173:2710–9.

    CrossRef  Google Scholar 

  14. Clarren SK, Smith DW. The fetal alcohol syndrome. N Engl J Med. 1978;298:1063–7.

    CrossRef  CAS  Google Scholar 

  15. Stratton K, Howe C, Battaglia F. Fetal alcohol syndrome: diagnosis, epidemiology, prevention and treatment. National Academy Press; 1996.

    Google Scholar 

  16. Astley SJ, Clarren SK. Diagnosing the full spectrum of fetal alcohol-exposed individuals: introducing the 4-digit diagnostic code. Alcohol Alcohol. 2000;35:400–10.

    CrossRef  CAS  Google Scholar 

  17. Hoyme HE, et al. Updated clinical guidelines for diagnosing fetal alcohol Spectrum disorders. Pediatrics. 2016;138

    Google Scholar 

  18. Chudley AE, et al. Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. Can Med Assoc J. 2005;172:S1–S21.

    CrossRef  Google Scholar 

  19. Cook JL, et al. Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ. 2016;188:191–7.

    CrossRef  Google Scholar 

  20. Kable JA, et al. Neurobehavioral disorder associated with prenatal alcohol exposure (ND-PAE): proposed DSM-5 diagnosis. Child Psychiatry Hum Dev. 2016;47:335–46.

    CrossRef  Google Scholar 

  21. Pierce DR, West JR. Blood alcohol concentration: a critical factor for producing fetal alcohol effects. Alcohol. 1986;3:269–72.

    CrossRef  CAS  Google Scholar 

  22. Pierce DR, Goodlett CR, West JR. Differential neuronal loss following early postnatal alcohol exposure. Teratology. 1989;40:113–26.

    CrossRef  CAS  Google Scholar 

  23. Chernoff GF. The fetal alcohol syndrome in mice: an animal model. Teratology. 1977;15:223–9.

    CrossRef  CAS  Google Scholar 

  24. Randall CL, Taylor WJ. Prenatal ethanol exposure in mice: teratogenic effects. Teratology. 1979;19:305–11.

    CrossRef  CAS  Google Scholar 

  25. Montag AC. Fetal alcohol-spectrum disorders: identifying at-risk mothers. Int J Women's Health. 2016;8:311–23.

    CrossRef  CAS  Google Scholar 

  26. May PA, Gossage JP. Maternal risk factors for fetal alcohol spectrum disorders: not as simple as it might seem. Alcohol Res Health. 2011;34:15–26.

    Google Scholar 

  27. Abel EL, Hannigan JH. Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicol Teratol. 1995;17:445–62.

    CrossRef  CAS  Google Scholar 

  28. Coles C. Critical periods for prenatal alcohol exposure. Alcohol Health Res World. 1994;18:22–9.

    Google Scholar 

  29. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3:79–83.

    CrossRef  CAS  Google Scholar 

  30. Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res. 1998;22:304–12.

    CrossRef  CAS  Google Scholar 

  31. Cudd TA, Cudd TA. Animal model systems for the study of alcohol teratology. Exp Biol Med. 2005;230:389–93.

    CrossRef  CAS  Google Scholar 

  32. May PA, et al. Maternal risk factors for fetal alcohol syndrome in the Western cape province of South Africa: a population-based study. Am J Public Health. 2005;95:1190–9.

    CrossRef  Google Scholar 

  33. Weinberg J. Nutritional issues in perinatal alcohol exposure. Neurobehav Toxicol Teratol. 6:261–9.

    Google Scholar 

  34. Young JK, Giesbrecht HE, Eskin MN, Aliani M, Suh M. Nutrition implications for fetal alcohol Spectrum disorder. Adv Nutr. 2014;5:675–92.

    CrossRef  CAS  Google Scholar 

  35. May PA, et al. Maternal nutritional status as a contributing factor for the risk of fetal alcohol spectrum disorders. Reprod Toxicol. 2016;59:101–8. https://doi.org/10.1016/j.reprotox.2015.11.006.

    CrossRef  CAS  Google Scholar 

  36. Krieger N, Williams DR, Moss NE. Measuring social class in US public Health Research: concepts, methodologies, and guidelines. Annu Rev Public Health. 1997;18:341–78.

    CrossRef  CAS  Google Scholar 

  37. Bingol N, et al. The influence of socioeconomic factors on the occurrence of fetal alcohol syndrome. Adv Alcohol Subst Abus. 1987;6:105–18. https://doi.org/10.1300/J251v06n04_08.

    CrossRef  CAS  Google Scholar 

  38. Lewis PT, Shipman VC, May PA. Socioeconomic status, psychological distress, and other maternal risk factors for fetal alcohol spectrum disorders among American Indians of the Northern Plains. Am Indian Alaska Nativ Ment Heal Res. 2011;17:1–21. https://doi.org/10.5820/aian.1702.2011.1.

    CrossRef  Google Scholar 

  39. Chrousos GP, Gold PW. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. JAMA. 1992;267:1244–52.

    CrossRef  CAS  Google Scholar 

  40. Ruiz RJ, Avant KC. Effects of maternal prenatal stress on infant outcomes: a synthesis of the literature. Adv Nurs Sci. 2005;28:345–55. https://doi.org/10.1097/00012272-200510000-00006.

    CrossRef  Google Scholar 

  41. Coussons-Read ME, Okun ML, Schmitt MP, Giese S. Prenatal stress alters cytokine levels in a manner that may endanger human pregnancy. Psychosom Med. 2005;67:625–31. https://doi.org/10.1097/01.psy.0000170331.74960.ad.

    CrossRef  CAS  Google Scholar 

  42. McLachlan K, et al. Dysregulation of the cortisol diurnal rhythm following prenatal alcohol exposure and early life adversity. Alcohol. 2016;53:9–18.

    CrossRef  CAS  Google Scholar 

  43. Yumoto C, Jacobson SW, Jacobson JL. Fetal substance exposure and cumulative environmental risk in an African American cohort. Child Dev. 2008;79:1761–76. https://doi.org/10.1111/j.1467-8624.2008.01224.x.

    CrossRef  Google Scholar 

  44. Abel E. Paternal contribution to fetal alcohol syndrome. Addict Biol. 2004;9:126–7.

    CrossRef  Google Scholar 

  45. Gearing R, McNeill T, Lozier A. Father involvement and fetal alcohol spectrum disorder: developing best practices. J FAS Int. 2005;3

    Google Scholar 

  46. Day J, Savani S, Krempley BD, Nguyen M, Kitlinska JB. Influence of paternal preconception exposures on their offspring: through epigenetics to phenotype. Am J Stem Cells. 2016;5:11–8.

    CAS  Google Scholar 

  47. Hemingway SJA, et al. Twin study confirms virtually identical prenatal alcohol exposures can lead to markedly different fetal alcohol spectrum disorder outcomes- fetal genetics influences fetal vulnerability. Adv Pediatr Res. 2019;5:1–19.

    Google Scholar 

  48. Dworkin S, Boglev Y, Owens H, Goldie S. The role of sonic hedgehog in craniofacial patterning, morphogenesis and cranial neural crest survival. J. Dev. Biol. 2016;4:24.

    CrossRef  Google Scholar 

  49. Hong M, Krauss RS. Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet. 2012;8:e1002999.

    CrossRef  CAS  Google Scholar 

  50. Ahlgren SC, Thakur V, Bronner-Fraser M. Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci U S A. 2002;99:10476–81.

    CrossRef  CAS  Google Scholar 

  51. Kietzman HW, Everson JL, Sulik KK, Lipinski RJ. The teratogenic effects of prenatal ethanol exposure are exacerbated by sonic hedgehog or Gli2 haploinsufficiency in the mouse. PLoS One. 2014;9:1–5.

    CrossRef  Google Scholar 

  52. Aoto K, Shikata Y, Higashiyama D, Shiota K, Motoyama J. Fetal ethanol exposure activates protein kinase a and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth Defects Res A Clin Mol Teratol. 2008;231:224–31.

    CrossRef  Google Scholar 

  53. Gurdon JB, Bourillot P-Y. Morphogen gradient interpretation. Nature. 2001;413:797–803.

    CrossRef  CAS  Google Scholar 

  54. Abramyan J. Hedgehog signaling and embryonic craniofacial disorders. J Dev Biol. 2019;7:9.

    CrossRef  CAS  Google Scholar 

  55. Huang P, et al. Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell. 2016;166:1176–1187.e14.

    CrossRef  CAS  Google Scholar 

  56. Logan CY, Nusse R. The WNT signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    CrossRef  CAS  Google Scholar 

  57. Lovely CB, Fernandes Y, Eberhart JK. Fishing for fetal alcohol Spectrum disorders: zebrafish as a model for ethanol Teratogenesis. Zebrafish. 2016;13:391–8.

    CrossRef  CAS  Google Scholar 

  58. Garic A, Berres ME, Smith SM. High-throughput transcriptome sequencing identifies candidate genetic modifiers of vulnerability to fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2014;38:1874–82.

    CrossRef  CAS  Google Scholar 

  59. Lauing KL, Roper PM, Nauer RK, Callaci JJ. Acute alcohol exposure impairs fracture healing and deregulates b–catenin signaling in the fracture callus. Alcohol Clin Exp Res. 2012;36:2095–103.

    CrossRef  CAS  Google Scholar 

  60. Reynolds K, Kumari P, Rincon LS, Gu R, Ji Y. Wnt signaling in orofacial clefts : crosstalk, pathogenesis and models. Dis Model Mech. 2019;12:dmm037051.

    CrossRef  CAS  Google Scholar 

  61. Teven CM, Farina EM, Rivas J, Reid RR. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis. 2014;1:199–213.

    CrossRef  Google Scholar 

  62. Chrisman K, et al. Gestational ethanol exposure disrupts the expression of FGF8 and Sonic hedgehog during limb patterning. Birth Defects Res A Clin Mol Teratol. 2004;171:163–71.

    CrossRef  Google Scholar 

  63. Diez R, Storey KG. Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. BioEssays. 2004;26:857–69.

    CrossRef  Google Scholar 

  64. Wang RN, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1:87–105.

    CrossRef  Google Scholar 

  65. Serrano M, Han M, Brinez P, Linask KK. Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. Am J Obstet Gynecol. 2010;203(75):e7–75.e15.

    Google Scholar 

  66. Burd L, et al. Congenital heart defects and fetal alcohol Spectrum disorders. Congenit Heart Dis. 2007;2:250–5.

    CrossRef  Google Scholar 

  67. Yelin R, et al. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol. 2005;279:193–204.

    CrossRef  CAS  Google Scholar 

  68. Yelin R, Kot H, Yelin D, Fainsod A. Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation. 2007;75:393–403.

    CrossRef  CAS  Google Scholar 

  69. Johnson CS, Zucker RM, Sidney E, Iii H, Sulik KK. Perturbation of retinoic acid (RA)–mediated limb development suggests a role for diminished RA signaling in the Teratogenesis of ethanol. Birth Defects Res (Part A). 2007;641:631–41.

    CrossRef  Google Scholar 

  70. Eriksson CJ. The role of acetaldehyde in the actions of alcohol. Alcohol Clin Exp Res. 2001;25:15S–32S.

    CrossRef  CAS  Google Scholar 

  71. Jacobson SW, et al. Protective effects of the alcohol dehydrogenase-ADH1B allele in children exposed to alcohol during pregnancy. J Pediatr. 2006;148:30–7.

    CrossRef  CAS  Google Scholar 

  72. Driscoll DA, et al. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet. 1993;30:813–7.

    CrossRef  CAS  Google Scholar 

  73. Cook JL, et al. Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ. 2016;1–7 https://doi.org/10.1503/cmaj.141593/-/DC1.

  74. Lammer EJ, et al. Retinoic acid Embryopathy. N Engl J Med. 1985;313:837–41.

    CrossRef  CAS  Google Scholar 

  75. Sanlaville D, et al. Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet. 2006;43:211–7.

    CrossRef  CAS  Google Scholar 

  76. Legendre M, et al. Phenotype and genotype analysis of a French cohort of 119 patients with CHARGE syndrome. Am J Med Genet. 2017;175C:417–30.

    CrossRef  Google Scholar 

  77. Hartshorne TS, Grialou TL, Parker KR. Autistic-like behavior in CHARGE syndrome. Am J Med Genet. 2005;133A:257–61.

    CrossRef  Google Scholar 

  78. Bakker G, et al. Distinct white-matter aberrations in 22q11.2 deletion syndrome and patients at ultra-high risk for psychosis. Psychol Med. 2016;46:2299–311.

    CrossRef  CAS  Google Scholar 

  79. Campbell LE, et al. Brain and behaviour in children with 22q11.2 deletion syndrome: A volumetric and voxel-based morphometry MRI study. Brain. 2006;129:1218–28.

    CrossRef  Google Scholar 

  80. Sulik KK, Cook CS, Webster WS. Teratogens and craniofacial malformations: relationships to cell death. Development. 1988;103:213–32.

    CrossRef  CAS  Google Scholar 

  81. Baldini A. Dissecting contiguous gene defects: TBX1. Curr Opin Genet Dev. 2005;15:279–84.

    CrossRef  CAS  Google Scholar 

  82. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.

    CrossRef  CAS  Google Scholar 

  83. Ziller MJ, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2014;500:477–81.

    CrossRef  Google Scholar 

  84. Lussier AA, Weinberg J, Kobor MS. Epigenetics studies of fetal alcohol spectrum disorder: where are we now? Epigenomics. 2017;9:291–311.

    CrossRef  CAS  Google Scholar 

  85. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.

    CrossRef  CAS  Google Scholar 

  86. Bock C. Epigenetic biomarker development. Epigenomics. 2009;1:99–110.

    CrossRef  CAS  Google Scholar 

  87. Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009;4:500–11.

    CrossRef  CAS  Google Scholar 

  88. Lussier AA, et al. Prenatal alcohol exposure: profiling developmental DNA methylation patterns in central and peripheral tissues. Front Genet. 2018;9:610.

    CrossRef  CAS  Google Scholar 

  89. Portales-Casamar E, et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9:81–101.

    CrossRef  Google Scholar 

  90. Lussier AA, et al. DNA methylation as a predictor of fetal alcohol spectrum disorder. Clin Epigenetics. 2018;10:5.

    CrossRef  Google Scholar 

  91. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    CrossRef  CAS  Google Scholar 

  92. Jarmasz JS, et al. Global DNA methylation and histone posttranslational modifications in human and nonhuman primate brain in association with prenatal alcohol exposure. Alcohol Clin Exp Res. 2019;43:1145–62.

    CAS  Google Scholar 

  93. Bogdanović O, Veenstra GJC. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 2009;118:549–65.

    CrossRef  Google Scholar 

  94. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    CrossRef  CAS  Google Scholar 

  95. Vieira AS, Dogini DB, Lopes-Cendes I. Role of non-coding RNAs in non-aging-related neurological disorders. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol. 2018;51:e7566.

    CrossRef  CAS  Google Scholar 

  96. Balaraman S, et al. Plasma miRNA profiles in pregnant women predict infant outcomes following prenatal alcohol exposure. PLoS One. 2016;11:e0165081.

    CrossRef  Google Scholar 

  97. Rogic S, Wong A, Pavlidis P. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling. Alcohol Clin Exp Res. 2016;40:717–27.

    CrossRef  CAS  Google Scholar 

  98. Kleiber ML, Mantha K, Stringer RL, Singh SM. Neurodevelopmental alcohol exposure elicits long-term changes to gene expression that alter distinct molecular pathways dependent on timing of exposure. J Neurodev Disord. 2013;5:6.

    CrossRef  Google Scholar 

  99. Lussier AA, et al. Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain. Alcohol Clin Exp Res. 2015;39:251–61.

    CrossRef  CAS  Google Scholar 

  100. Chater-Diehl EJ, Laufer BI, Castellani CA, Alberry BL, Singh SM. Alteration of gene expression, DNA methylation, and histone methylation in free radical scavenging networks in adult mouse hippocampus following fetal alcohol exposure. PLoS One. 2016;11:e0154836.

    CrossRef  Google Scholar 

  101. Kawasawa YI, et al. Genome-wide profiling of differentially spliced mRNAs in human fetal cortical tissue exposed to alcohol. Alcohol. 2017;62:1–9.

    CrossRef  CAS  Google Scholar 

  102. Davis-Anderson KL, et al. Placental proteomics reveal insights into fetal alcohol Spectrum disorders. Alcohol Clin Exp Res. 2017;41:1551–8.

    CrossRef  CAS  Google Scholar 

  103. Holbrook BD, et al. The association between prenatal alcohol exposure and protein expression in human placenta. Birth Defects Res. 2019;1–11:749–59. https://doi.org/10.1002/bdr2.1488.

    CrossRef  CAS  Google Scholar 

  104. Datta S, et al. Fetal alcohol syndrome (FAS) in C57BL/6 mice detected through proteomics screening of the amniotic fluid. Birth defects Res Part A Clin Mol Teratol. 2008;82:177–86.

    CrossRef  CAS  Google Scholar 

  105. Popova S, Lange S, Probst C, Gmel G, Rehm J. Global prevalence of alcohol use and binge drinking during pregnancy, and fetal alcohol spectrum disorder. Biochem Cell Biol. 2018;96:237–40. https://doi.org/10.1139/bcb-2017-0077.

    CrossRef  CAS  Google Scholar 

  106. Goh PK, et al. A decision tree to identify children affected by prenatal alcohol exposure. J Pediatr. 2016;177:121–127.e1.

    CrossRef  Google Scholar 

  107. Ostrea EM, et al. Fatty acid ethyl esters in meconium: are they biomarkers of fetal alcohol exposure and effect? Alcohol Clin Exp Res. 2006;30:1152–9.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey G. Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lussier, A.A., Petrelli, B., Hicks, G.G., Weinberg, J. (2023). Genetic, Epigenetic, and Environmental Influences on Fetal Alcohol Spectrum Disorder: Implications for Diagnosis, Research and Clinical Practice. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F., Yager, J.Y. (eds) Neurodevelopmental Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-20792-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20792-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20791-4

  • Online ISBN: 978-3-031-20792-1

  • eBook Packages: MedicineMedicine (R0)