Skip to main content

Additive Manufacturing of Nickel Alloys

  • Chapter
  • First Online:
Springer Handbook of Additive Manufacturing

Part of the book series: Springer Handbooks ((SHB))

Abstract

Due to their excellent high-temperature properties, nickel-based alloys are widely used in aerospace and gas turbine-related applications. Their niche low-volume application, along with the requirement of intricate geometries for these applications, makes the use of Ni-based superalloys with additive manufacturing very lucrative. Hence, additive manufacturing of these superalloys has garnered significant interest from the industry and research community alike. But at the same time, it presents significant challenges, which include susceptibility of some of these alloys to cracking, residual stresses inherent to additive manufacturing, precise control of microstructure, etc., all of which influence the final mechanical properties of the additively manufactured components. This chapter aims to cover a basic introduction to Ni-based superalloys, their microstructural characteristics after fabrication with melt fusion-based processes and after post-processing heat treatment, the types of defects that result from additive manufacturing, the mechanism of defect formation, and the influence of all of these aspects on the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed, R.C.: The Superalloys: Fundamentals and Applications. Cambridge University Press. ISBN 9780521070119 (2008)

    Google Scholar 

  2. Popovich, V., Borisov, E., Popovich, A., Sufiiarov, V.S., Masaylo, D., Alzina, L.: Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater. Des. 114, 441–449 (2017)

    Article  Google Scholar 

  3. Deshpande, A., Nath, S.D., Atre, S., Hsu, K.: Effect of post processing heat treatment routes on microstructure and mechanical property evolution of Haynes 282 Ni-based superalloy fabricated with selective laser melting (SLM). Metals. 10(5), 629 (2020)

    Article  Google Scholar 

  4. Chen, J., Xue, L.: Process-induced microstructural characteristics of laser consolidated IN-738 superalloy. Mater. Sci. Eng. A. 527(27–28), 7318–7328 (2010)

    Article  Google Scholar 

  5. Jouiad, M., et al.: Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging. Mater. Des. 102, 284–296 (2016)

    Article  Google Scholar 

  6. Zhang, D., Niu, W., Cao, X., Liu, Z.: Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater. Sci. Eng. A. 644, 32–40 (2015)

    Article  Google Scholar 

  7. Raghavan, S., et al.: Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy. Mater. Manuf. Process. 32(14), 1588–1595 (2017)

    Article  Google Scholar 

  8. Aydinöz, M., et al.: On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater. Sci. Eng. A. 669, 246–258 (2016)

    Article  Google Scholar 

  9. Li, S., Wei, Q., Shi, Y., Zhu, Z., Zhang, D.: Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J. Mater. Sci. Technol. 31(9), 946–952 (2015)

    Article  Google Scholar 

  10. Kanagarajah, P., Brenne, F., Niendorf, T., Maier, H.: Inconel 939 processed by selective laser melting: effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater. Sci. Eng. A. 588, 188–195 (2013)

    Article  Google Scholar 

  11. Perevoshchikova, N., et al.: Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design. Rapid Prototyp. J. 23, 881 (2017)

    Article  Google Scholar 

  12. Tomus, D., Tian, Y., Rometsch, P.A., Heilmaier, M., Wu, X.: Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting. Mater. Sci. Eng. A. 667, 42–53 (2016)

    Article  Google Scholar 

  13. Han, Q., et al.: Laser powder bed fusion of Hastelloy X: effects of hot isostatic pressing and the hot cracking mechanism. Mater. Sci. Eng. A. 732, 228–239 (2018)

    Article  Google Scholar 

  14. Vilaro, T., Colin, C., Bartout, J.-D., Nazé, L., Sennour, M.: Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater. Sci. Eng. A. 534, 446–451 (2012)

    Article  Google Scholar 

  15. Kirka, M., Unocic, K., Raghavan, N., Medina, F., Dehoff, R., Babu, S.: Microstructure development in electron beam-melted Inconel 718 and associated tensile properties. JOM. 68(3), 1012–1020 (2016)

    Article  Google Scholar 

  16. Murr, L.E., et al.: Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting. Metall. Mater. Trans. A. 42(11), 3491–3508 (2011)

    Article  Google Scholar 

  17. Ramsperger, M., Singer, R.F., Körner, C.: Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Metall. Mater. Trans. A. 47(3), 1469–1480 (2016)

    Article  Google Scholar 

  18. Dinda, G., Dasgupta, A., Mazumder, J.: Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater. Sci. Eng. A. 509(1–2), 98–104 (2009)

    Article  Google Scholar 

  19. Zhao, X., Lin, X., Chen, J., Xue, L., Huang, W.: The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming. Mater. Sci. Eng. A. 504(1–2), 129–134 (2009)

    Article  Google Scholar 

  20. Li, J., Wang, H.: Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene′ 41 by laser melting deposition manufacturing. Mater. Sci. Eng. A. 527(18–19), 4823–4829 (2010)

    Article  Google Scholar 

  21. Carter, L.N., et al.: Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater. Sci. Technol. 32(7), 657–661 (2016)

    Article  Google Scholar 

  22. Koutiri, I., Pessard, E., Peyre, P., Amlou, O., De Terris, T.: Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 255, 536–546 (2018)

    Article  Google Scholar 

  23. Kumar, P., Farah, J., Akram, J., Teng, C., Ginn, J., Misra, M.: Influence of laser processing parameters on porosity in Inconel 718 during additive manufacturing. Int. J. Adv. Manuf. Technol. 103(1–4), 1497–1507 (2019)

    Article  Google Scholar 

  24. Carter, L.N., Essa, K., Attallah, M.M.: Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyp. J. 21, 423 (2015)

    Article  Google Scholar 

  25. Jia, H., Sun, H., Wang, H., Wu, Y., Wang, H.: Scanning strategy in selective laser melting (SLM): a review. Int. J. Adv. Manuf. Technol., 1–23 (2021)

    Google Scholar 

  26. Wang, Z., Guan, K., Gao, M., Li, X., Chen, X., Zeng, X.: The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 513, 518–523 (2012)

    Article  Google Scholar 

  27. Y. Zhang, X. Cao, P. Wanjara, and M. Medraj, “Fiber Laser Deposition of Inconel 718 Using Powders,” 2013

    Google Scholar 

  28. Qi, H., Azer, M., Ritter, A.: Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718. Metall. Mater. Trans. A. 40(10), 2410–2422 (2009)

    Article  Google Scholar 

  29. Simchi, A., Pohl, H.: Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater. Sci. Eng. A. 359(1–2), 119–128 (2003)

    Article  Google Scholar 

  30. Niu, H.J., Chang, I.: Instability of scan tracks of selective laser sintering of high speed steel powder. Scr. Mater. 41, 1229–1234 (1999)

    Article  Google Scholar 

  31. Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)

    Article  Google Scholar 

  32. Adegoke, O., Andersson, J., Brodin, H., Pederson, R.: Influence of laser powder bed fusion process parameters on voids, cracks, and microhardness of nickel-based superalloy alloy 247LC. Materials. 13(17), 3770 (2020)

    Article  Google Scholar 

  33. Guraya, T., Singamneni, S., Chen, Z.: Microstructure formed during selective laser melting of IN738LC in keyhole mode. J. Alloys Compd. 792, 151–160 (2019)

    Article  Google Scholar 

  34. Attallah, M.M., Jennings, R., Wang, X., Carter, L.N.: Additive manufacturing of Ni-based superalloys: the outstanding issues. MRS Bull. 41(10), 758 (2016)

    Article  Google Scholar 

  35. Kou, S.: Solidification and liquation cracking issues in welding. JOM. 55(6), 37–42 (2003)

    Article  Google Scholar 

  36. Tomus, D., Rometsch, P.A., Heilmaier, M., Wu, X.: Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting. Addit. Manuf. 16, 65–72 (2017)

    Google Scholar 

  37. Han, Q., et al.: Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy. Addit. Manuf. 30, 100919 (2019)

    Google Scholar 

  38. Lopez-Galilea, I., et al.: Additive manufacturing of CMSX-4 Ni-base superalloy by selective laser melting: influence of processing parameters and heat treatment. Addit. Manuf. 30, 100874 (2019)

    Google Scholar 

  39. Qiu, C., Chen, H., Liu, Q., Yue, S., Wang, H.: On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting. Mater. Charact. 148, 330–344 (2019)

    Article  Google Scholar 

  40. Zhou, Z., Huang, L., Shang, Y., Li, Y., Jiang, L., Lei, Q.: Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing. Mater. Des. 160, 1238–1249 (2018)

    Article  Google Scholar 

  41. Zhong, M., Sun, H., Liu, W., Zhu, X., He, J.: Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr. Mater. 53(2), 159–164 (2005)

    Article  Google Scholar 

  42. Bi, G., Sun, C.-N., Chen, H.-c., Ng, F.L., Ma, C.C.K.: Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing. Mater. Des. 60, 401–408 (2014)

    Article  Google Scholar 

  43. Zhang, G., Xiao, C., Taheri, M.: Effect of Nd: YAG pulsed laser welding process on the liquation and strain-age cracking in GTD-111 superalloy. J. Manuf. Process. 52, 66–78 (2020)

    Article  Google Scholar 

  44. Sidhu, R., Ojo, O., Chaturvedi, M.: Microstructural response of directionally solidified Rene 80 superalloy to gas-tungsten arc welding. Metall. Mater. Trans. A. 40(1), 150–162 (2009)

    Article  Google Scholar 

  45. Carter, L.N., Attallah, M.M., Reed, R.C.: Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking. Superalloys. 2012, 577–586 (2012)

    Article  Google Scholar 

  46. Kim, I., Choi, B., Hong, H., Yoo, Y., Jo, C.: Anomalous deformation behavior and twin formation of Ni-base superalloys at the intermediate temperatures. Mater. Sci. Eng. A. 528(24), 7149–7155 (2011)

    Article  Google Scholar 

  47. Carter, L.N., Martin, C., Withers, P.J., Attallah, M.M.: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd. 615, 338–347 (2014)

    Article  Google Scholar 

  48. Ramirez, A., Lippold, J.: High temperature behavior of Ni-base weld metal: part II–insight into the mechanism for ductility dip cracking. Mater. Sci. Eng. A. 380(1–2), 245–258 (2004)

    Article  Google Scholar 

  49. Xu, J., et al.: The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy. J. Alloys Compd. 749, 859–870 (2018)

    Article  Google Scholar 

  50. Peng, K., et al.: Cracking behavior of René 104 nickel-based superalloy prepared by selective laser melting using different scanning strategies. Materials. 13(9), 2149 (2020)

    Article  Google Scholar 

  51. Wang, N., Mokadem, S., Rappaz, M., Kurz, W.: Solidification cracking of superalloy single-and bi-crystals. Acta Mater. 52(11), 3173–3182 (2004)

    Article  Google Scholar 

  52. Lu, Y., et al.: Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt. Laser Technol. 75, 197–206 (2015)

    Article  Google Scholar 

  53. Catchpole-Smith, S., Aboulkhair, N., Parry, L., Tuck, C., Ashcroft, I., Clare, A.: Fractal scan strategies for selective laser melting of ‘unweldable’nickel superalloys. Addit. Manuf. 15, 113–122 (2017)

    Google Scholar 

  54. Ni, M., et al.: Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater. Sci. Eng. A. 701, 344–351 (2017)

    Article  Google Scholar 

  55. Kirka, M.M., Greeley, D.A., Hawkins, C., Dehoff, R.R.: Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting. Int. J. Fatigue. 105, 235–243 (2017)

    Article  Google Scholar 

  56. Kong, D., et al.: Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting. Constr. Build. Mater. 221, 720–729 (2019)

    Article  Google Scholar 

  57. Newell, D.J., et al.: Mitigation of scan strategy effects and material anisotropy through supersolvus annealing in LPBF IN718. Mater. Sci. Eng. A. 764, 138230 (2019)

    Article  Google Scholar 

  58. Radhakrishna, C., Rao, K.P., Srinivas, S.: Laves phase in superalloy 718 weld metals. J. Mater. Sci. Lett. 14(24), 1810–1812 (1995)

    Article  Google Scholar 

  59. Divya, V., et al.: Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment. Mater. Charact. 114, 62–74 (2016)

    Article  Google Scholar 

  60. Murr, L., et al.: Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Mater. 61(11), 4289–4296 (2013)

    Article  Google Scholar 

  61. Wagner, C.: Theory of precipitate change by redissolution. Z. Elektrochem. 65, 581–591 (1961)

    Google Scholar 

  62. Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids. 19(1–2), 35–50 (1961)

    Article  Google Scholar 

  63. Muñoz-Moreno, R., et al.: Effect of heat treatment on the microstructure, texture and elastic anisotropy of the nickel-based superalloy CM247LC processed by selective laser melting. Mater. Sci. Eng. A. 674, 529–539 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anagh Deshpande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshpande, A. (2023). Additive Manufacturing of Nickel Alloys. In: Pei, E., et al. Springer Handbook of Additive Manufacturing. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-20752-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20752-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20751-8

  • Online ISBN: 978-3-031-20752-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics