Skip to main content

A Survey on Temporal Knowledge Graphs-Extrapolation and Interpolation Tasks

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2022)

Abstract

Current research on knowledge graphs focuses mostly on static knowledge graphs while ignoring temporal information. Recently, people have begun to study the temporal knowledge graph, which integrates temporal information into KGC, so that the modeling is constantly changing with the knowledge that evolves over time. In this survey, we summarize the existing temporal knowledge graph research, which is divided into extrapolation tasks and interpolation tasks according to time. The extrapolation task is mainly used to predict future facts and consists of three models: Temporal Point Process, Time Series, and other models. The interpolation task extends the existing KGC models to complement the lack of past temporal information, including five models: Translational Distance, Semantic Matching, Neural, Relational Rotation, and Hyperbolic Geometric models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. In: IEEE Transactions on Knowledge and Data Engineering, vol. 29, pp. 2724–2743 (2017)

    Google Scholar 

  2. Bordes, A., Weston, J., Usunier, N.: Open Question Answering with Weakly Supervised Embedding Models. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 165–180. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_11

    Chapter  Google Scholar 

  3. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic Systems, vol.13, pp. 121–124. ACM Press (2013)

    Google Scholar 

  4. Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)

    Google Scholar 

  5. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. In: IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017)

    Google Scholar 

  6. Smirnov, A., Levashova, T.: Knowledge fusion patterns: a survey. Inf. Fusion 52, 31–40 (2019)

    Google Scholar 

  7. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P., S.: A Survey on knowledge graphs: representation, acquisition, and applications. In: IEEE Trans. Neural Netw. Learn. Syst. 33, 494–514 (2022)

    Google Scholar 

  8. Mo, C., Wang, Y., Jia, Y., Liao, Q.: Survey on temporal knowledge graph. In: 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC) 294–300. IEEE (2021)

    Google Scholar 

  9. Cai, B., Xiang, Y., Gao, L., Zhang, H., Li, Y., Li, J.: Temporal knowledge graph completion: a survey. In: arXiv:2201.08236 (2022)

    Google Scholar 

  10. Barnard, E., Wessels, L.F.A.: Extrapolation and interpolation in neural network classifiers. In: IEEE Control Syst. 12, 50–53 (1992)

    Google Scholar 

  11. Taylor, C.: The difference between extrapolation and interpolation. In: ThoughtCo. https://www.thoughtco.com/extrapolation-and-interpolation-difference-3126301. Aaccessed 2022/5/23

  12. Yang, S.-H., Zha, H.: Mixture of mutually exciting processes for viral diffusion. In: Proceedings of the 30th International Conference on Machine Learning, pp. 1–9. PMLR (2013)

    Google Scholar 

  13. Liu, S., Li, L.: Learning general temporal point processes based on dynamic weight generation. Appl. Intell. 52, 3678–3690 (2022)

    Google Scholar 

  14. Yan, J.: Recent advance in temporal point process: from machine learning perspective. In: IJCAI 2019, p. 7 (2019)

    Google Scholar 

  15. Cox, D.R., Lewis, P.A.W: Multivariate point processes. Selected statistical papers of Sir David cox: volume 1. Des. Invest. Stat. Methods Appl. 1(159) (2006)

    Google Scholar 

  16. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3462–3471 (2017)

    Google Scholar 

  17. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: learning representations over dynamic graphs. In: ICLR, p. 25 (2019)

    Google Scholar 

  18. Knyazev, B., Augusta, C., Taylor, G. W.: Learning temporal attention in dynamic graphs with bilinear interactions. In: PLoS ONE, vol. 16, pp. e0247936 (2021)

    Google Scholar 

  19. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs. In: arxiv:1904.05530v3 (2019)

    Google Scholar 

  20. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling Relational Data with Graph Convolutional Networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  21. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhan, Y.: Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks. In: AAAI (2021)

    Google Scholar 

  22. He, Y., Zhang, P., Liu, L., Liang, Q., Zhang, W., Zhang, C.: HIP network: historical information passing network for extrapolation reasoning on temporal knowledge graph. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp. 1915–1921 (2021)

    Google Scholar 

  23. Teo, T.W., Choy, B.H.: in. In: Tan, O.S., Low, E.L., Tay, E.G., Yan, Y.K. (eds.) Singapore Math and Science Education Innovation. ETLPPSIP, vol. 1, pp. 43–59. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1357-9_3

    Chapter  Google Scholar 

  24. Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A.C., Bengio, Y.: An actor-critic algorithm for sequence prediction. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  25. Feng, J., Huang, M., Zhao, L., Yang, Y., Zhu, X.: Reinforcement learning for relation classification from noisy data. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, pp. 5779–5786 (2018)

    Google Scholar 

  26. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: Deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519–527 (2020)

    Google Scholar 

  27. Fathy, A., Li, K.: TemporalGAT: Attention-Based Dynamic Graph Representation Learning. In: Lauw, H.W., Wong, R.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12084, pp. 413–423. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47426-3_32

    Chapter  Google Scholar 

  28. Mirtaheri, M., Rostami, M., Ren, X., Morstatter, F., Galstyan, A.: One-shot learning for temporal knowledge graphs. In: arXiv:2010.12144 (2020)

    Google Scholar 

  29. Han, Z., Chen, P., Ma, Y., Tresp, V.: xERTE: Explainable reasoning on temporal knowledge graphs for forecasting future links. In: arXiv:2012.15537 (2020)

    Google Scholar 

  30. Ahrabian, K., Tarlow, D., Cheng, H., Guo, J.L.C.: Software engineering event modeling using relative time in temporal knowledge graphs. In: arXiv:2007.01231 (2020)

    Google Scholar 

  31. Huang, C.-Z.A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A.M., Hoffman, M.D., Dinculescu, M., Eck, D.: Music Transformer. In: arXiv:1809.04281 (2018)

    Google Scholar 

  32. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: arXiv:1901.02860 (2019)

    Google Scholar 

  33. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive representation learning on temporal graphs. In: arXiv:2002.07962 (2020)

    Google Scholar 

  34. Loomis,L., H.: Introduction to abstract harmonic analysis. Courier Corporation (2013)

    Google Scholar 

  35. Jiang, T., Liu, T., Ge, T., Sha, L., Li, S., Chang, B., Sui, Z.: Encoding Temporal information for time-aware link prediction. In: in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2350–2354 (2016)

    Google Scholar 

  36. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: in Neural Information Processing Systems (NIPS), pp. 1–9 (2013)

    Google Scholar 

  37. Leblay, J., Chekol, M. W.: Deriving validity time in knowledge graph. In: Companion of the The Web Conference 2018, pp. 1771–1776. ACM Press (2018)

    Google Scholar 

  38. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  39. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)

    Google Scholar 

  40. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)

    Google Scholar 

  41. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080(2016)

    Google Scholar 

  42. Lacroix, T., Obozinski, G., Usunier, N.: Tensor Decompositions for temporal knowledge base completion. In: arXiv:2004.04926 (2020)

    Google Scholar 

  43. Jain, P., Rathi, S., Mausam, Chakrabarti, S.: Temporal knowledge base completion: new algorithms and evaluation protocols. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3733–3747 (2020)

    Google Scholar 

  44. Xu, C., Chen, Y.-Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2569–2578 (2021)

    Google Scholar 

  45. Liu, Y., Hua, W., Xin, K., Zhou, X.: Context-Aware Temporal Knowledge Graph Embedding. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds.) WISE 2020. LNCS, vol. 11881, pp. 583–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34223-4_37

    Chapter  Google Scholar 

  46. Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: TeMP: temporal message passing for temporal knowledge graph completion. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5730–5746 (2020)

    Google Scholar 

  47. Sun, Z., Deng, Z.-H., Nie, J.-Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)

    Google Scholar 

  48. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: arXiv:1904.10281 (2019)

    Google Scholar 

  49. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: TeRo: a time-aware knowledge graph embedding via temporal rotation. In: arXiv:2010.01029 (2020)

    Google Scholar 

  50. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: ChronoR: rotation based temporal knowledge graph embedding. In: arXiv:2103.10379 (2021)

    Google Scholar 

  51. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: arXiv:1705.08039 (2017)

    Google Scholar 

  52. Chamberlain, B.P., Clough, J., Deisenroth, M.P.: Neural embeddings of graphs in hyperbolic space. In: arXiv:1705.10359 (2017)

    Google Scholar 

  53. Han, Z., Ma, Y., Chen, P., Tresp, V.: DyERNIE: Dynamic evolution of Riemannian manifold embeddings for temporal knowledge graph completion. In: arXiv:2011.03984 (2020)

    Google Scholar 

  54. Montella, S., Rojas-Barahona, L., Heinecke, J.: Hyperbolic temporal knowledge graph embeddings with relational and time curvatures. In: arXiv:2106.04311 (2021)

    Google Scholar 

  55. Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic knowledge graph embeddings. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6901–6914 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Wang, J. (2023). A Survey on Temporal Knowledge Graphs-Extrapolation and Interpolation Tasks. In: Xiong, N., Li, M., Li, K., Xiao, Z., Liao, L., Wang, L. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-031-20738-9_110

Download citation

Publish with us

Policies and ethics